- Linux
- Python 3.7+
- PyTorch ≤ 1.4 (We haven't tested higher version)
- CUDA 9.0 or higher
- mmdet==1.1.0
- ==0.6.2
- GCC 4.9 or higher
- NCCL 2
We have tested the following versions of OS and softwares:
- OS:Ubuntu 16.04
- CUDA: 10.0/10.1
- NCCL: 2.1.15/2.2.13/2.3.7/2.4.2
- GCC(G++): 4.9/5.3/5.4/7.3
a. Create a conda virtual environment and activate it.
conda create -n orientedreppoints python=3.8 -y
source activate orientedreppoints
b. Make sure your CUDA runtime api version ≤ CUDA driver version. (for example 10.1 ≤ 10.2)
nvcc -V
nvidia-smi
c. Install PyTorch and torchvision following the official instructions, Make sure cudatoolkit version same as CUDA runtime api version, e.g.,
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
d. Clone the orientedreppoints_dota repository.
git clone https://github.com/hukaixuan19970627/OrientedRepPoints_DOTA.git
cd OrientedRepPoints_DOTA
e. Install orientedreppoints_dota.
pip install -r requirements.txt
python setup.py develop #or "pip install -v -e ."
cd OrientedRepPoints_DOTA/DOTA_devkit
sudo apt-get install swig
swig -c++ -python polyiou.i
python setup.py build_ext --inplace
It is recommended to symlink the dataset root to $orientedreppoints/data. If your folder structure is different, you may need to change the corresponding paths in config files.
orientedreppoints
|——mmdet
|——tools
|——configs
|——data
| |——dota
| | |——trainval_split
| | | |——images
| | | |——labelTxt
| | | |——trainval.json
| | |——test_split
| | | |——images
| | | |——test.json
| |——HRSC2016(OPTINAL)
| | |——Train
| | | |——images
| | | |——labelTxt
| | | |——train.txt
| | | |——trainval.json
| | |——Test
| | | |——images
| | | |——test.txt
| | | |——test.json
| |——UCASAOD(OPTINAL)
| | |——Train
| | | |——images
| | | |——labelTxt
| | | |——train.txt
| | | |——trainval.json
| | |——Test
| | | |——images
| | | |——test.txt
| | | |——test.json
Note:
train.txt
andtest.txt
in HRSC2016 and UCASAOD are.txt
files recording image names without extension.- Without the pre-divided
train
,test
, andval
sub-dataset, the partition of UCASAOD dataset follows the rep.