-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathscalability.py
137 lines (126 loc) · 4.98 KB
/
scalability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
import os
import numpy as np
import pandas as pd
from scipy.stats import loguniform
from src.evaluation.models.dataset import save_csv
import time
import signal
# A handler for timeout
def handler(signum, frame):
raise Exception("time over")
# import given algorithm class dynamically
# input: module name, class name, hyperparameters file name (optional)
parser = argparse.ArgumentParser(description="DR algorithm benchmark")
parser.add_argument('-m', "--module", type=str, help="a module name including target class", required=True)
parser.add_argument('-c', "--classname", type=str, help="a class name that activate DR algorithm", required=True)
parser.add_argument('-p', "--paramfile", type=str, help="a file containing hyperparameters", default=None)
parser.add_argument('-d', "--dataset", nargs='+', help="a dataset name", default=None)
parser.add_argument('-r', "--repeat", type=int, help="number of times to repeat", default=1)
args = parser.parse_args()
# alg_class: an executable model class
# Assume the class has fit_transform method
alg_module = __import__(args.module, globals(), locals(), [args.classname], 0)
alg_class = getattr(alg_module, args.classname)
# dict to log average execution time for each dataset
avg_time_dict = {}
# get hyperparameters from console input or param file
hp_dict = {}
# if paramfile is not given
if args.paramfile is None:
print("Input parameters in [name]=<value> form. If you want to end, press Enter twice.")
s = input()
while s and s != "":
if '=' not in s:
print("Wrong input format. Please write in [name]=<value> form.")
s = input()
continue
s_list = s.split('=')
# try to convert value into int, float, or boolean if possible
try:
s_list[1] = int(s_list[1])
except:
try:
s_list[1] = float(s_list[1])
except:
try:
s_list[1] = bool(s_list[1])
except:
pass
hp_dict[s_list[0]] = s_list[1]
s = input()
# if paramfile is given
else:
param_file = open(args.paramfile, 'r')
for line in param_file.readlines():
if '=' not in line:
continue
line = line.strip()
s_list = line.split('=')
# try to convert value into int, float, or boolean if possible
try:
s_list[1] = int(s_list[1])
except:
try:
s_list[1] = float(s_list[1])
except:
try:
s_list[1] = bool(s_list[1])
except:
pass
hp_dict[s_list[0]] = s_list[1]
# get the list of names of datasets that will be used to test the algorithm
# if --dataset is not given, then use all datasets
dataset_list = []
if args.dataset is None:
rootdir = 'umato_exp/datasets/npy'
for rootdir, dirs, files in os.walk(rootdir):
dataset_list = dirs
break
else:
dataset_list = sorted(args.dataset)
# load dataset with .npy file and run algorithm for specified number of times
for datadir in dataset_list:
print(f'Run [{args.classname}] as ')
x = np.load(f'umato_exp/datasets/npy/{datadir}/data.npy')
label = np.load(f'umato_exp/datasets/npy/{datadir}/label.npy')
elapsed_time = []
for i in range(args.repeat+1):
# timeout after an hour
signal.signal(signal.SIGALRM, handler)
signal.alarm(3600)
try:
start = time.time()
y = alg_class(**hp_dict).fit_transform(x)
end = time.time()
signal.alarm(0)
if i > 0:
print(f"[{args.classname}, {datadir}] elapsed time (repeat {i}): {end-start}")
elapsed_time.append(end-start)
except:
print(f"[{args.classname}, {datadir}] elapsed time (repeat {i}) over 1 hour")
elapsed_time.append(np.inf)
avg_time = sum(elapsed_time) / len(elapsed_time)
print(f"[{args.classname}, {datadir}] average time of {args.repeat} trials: {avg_time}")
avg_time_dict[datadir] = avg_time
# save train results into csv
path = os.path.join(os.getcwd(), "visualization", "public", "results", datadir)
save_csv(path, alg_name=args.classname, data=y, label=label)
# load scalability.csv file as a dataframe and save
try:
df = pd.read_csv("scalability/scalability.csv")
# if csv does not exist, than create a new dataframe
except OSError:
df = pd.DataFrame(columns=(['name', 'repeat_num'] + dataset_list) )
# add new columns(datasets) to already existing dafaframe
for col in dataset_list:
if col not in df.columns:
df[col] = np.nan
# add new row
if args.classname in df['name']:
df.drop(df[df['name'] == args.classname].index, inplace = True)
df = df.append({**avg_time_dict, 'repeat_num': args.repeat, 'name': args.classname}, ignore_index=True)
if 'Unnamed: 0' in df.columns:
df.drop(['Unnamed: 0'], axis = 1, inplace = True)
print(df)
df.to_csv("scalability/scalability.csv")