-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtranslate_mm_vi.py
executable file
·183 lines (152 loc) · 6.53 KB
/
translate_mm_vi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
#!/usr/bin/env python
from __future__ import division, unicode_literals
import os
import argparse
import math
import codecs
import torch
from itertools import count
import onmt.io
import onmt.translate
import onmt
import onmt.ModelConstructor
import onmt.modules
from onmt.Utils import MODEL_TYPES
import opts
import tables
parser = argparse.ArgumentParser(
description='translate_mm_vi.py',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
opts.add_md_help_argument(parser)
opts.translate_opts(parser)
opts.translate_mm_vi_opts(parser)
opt = parser.parse_args()
def _report_score(name, score_total, words_total):
print("%s AVG SCORE: %.4f, %s PPL: %.4f" % (
name, score_total / words_total,
name, math.exp(-score_total / words_total)))
def _report_bleu():
import subprocess
print()
res = subprocess.check_output(
"perl tools/multi-bleu.perl %s < %s" % (opt.tgt, opt.output),
shell=True).decode("utf-8")
print(">> " + res.strip())
def _report_rouge():
import subprocess
res = subprocess.check_output(
"python tools/test_rouge.py -r %s -c %s" % (opt.tgt, opt.output),
shell=True).decode("utf-8")
print(res.strip())
def main():
dummy_parser = argparse.ArgumentParser(description='train_mm_vi.py')
opts.model_opts(dummy_parser)
dummy_opt = dummy_parser.parse_known_args([])[0]
opt.cuda = opt.gpu > -1
if opt.cuda:
torch.cuda.set_device(opt.gpu)
print("Using GPU")
torch.set_default_tensor_type("torch.cuda.FloatTensor")
else:
print("Using CPU")
torch.set_default_tensor_type("torch.FloatTensor")
# loading checkpoint just to find multimodal model type
checkpoint = torch.load(opt.model,
map_location=lambda storage, loc: storage)
opt.multimodal_model_type = checkpoint['opt'].multimodal_model_type
opt.use_global_image_features = checkpoint['opt'].use_global_image_features
opt.use_posterior_image_features = checkpoint['opt'].use_posterior_image_features
# work-around to get fix issue
assert(opt.multimodal_model_type in MODEL_TYPES), \
'Variational multimodal model type not implemented: %s'%str(opt.multimodal_model_type)
print("Translating with multimodal_model_type: %s"%str(opt.multimodal_model_type))
del checkpoint
if opt.batch_size > 1:
print( "Batch size > 1 not implemented! Falling back to batch_size = 1 ..." )
opt.batch_size = 1
# load test image features
test_file = tables.open_file(opt.path_to_test_img_feats, mode='r')
if opt.multimodal_model_type in MODEL_TYPES:
if opt.use_global_image_features:
# load only the global image features
test_img_feats = test_file.root.global_feats[:]
print('Using global image features...')
else: # opt.use_posterior_image_features
# load only the global image features
test_img_feats = test_file.root.logits[:]
print('Using image posterior class probabilities...')
else:
raise Exception("Model type not implemented: %s"%opt.multimodal_model_type)
test_file.close()
# Load the model.
fields, model, model_opt = \
onmt.ModelConstructor.load_test_model(opt, dummy_opt.__dict__)
# File to write sentences to.
out_file = codecs.open(opt.output, 'w', 'utf-8')
# Test data
data = onmt.io.build_dataset(fields, opt.data_type,
opt.src, opt.tgt,
src_dir=opt.src_dir,
sample_rate=opt.sample_rate,
window_size=opt.window_size,
window_stride=opt.window_stride,
window=opt.window,
use_filter_pred=False)
# Sort batch by decreasing lengths of sentence required by pytorch.
# sort=False means "Use dataset's sortkey instead of iterator's".
print("opt.gpu: %s"%str(opt.gpu))
data_iter = onmt.io.OrderedIterator(
dataset=data, device=opt.gpu,
batch_size=opt.batch_size, train=False, sort=False,
sort_within_batch=True, shuffle=False)
# Translator
scorer = onmt.translate.GNMTGlobalScorer(opt.alpha, opt.beta)
translator = onmt.translate.TranslatorMultimodalVI(model, fields,
beam_size=opt.beam_size,
n_best=opt.n_best,
global_scorer=scorer,
max_length=opt.max_length,
copy_attn=model_opt.copy_attn,
cuda=opt.cuda,
beam_trace=opt.dump_beam != "",
min_length=opt.min_length,
test_img_feats=test_img_feats,
multimodal_model_type=opt.multimodal_model_type)
builder = onmt.translate.TranslationBuilder(
data, translator.fields,
opt.n_best, opt.replace_unk, opt.tgt)
# Statistics
counter = count(1)
pred_score_total, pred_words_total = 0, 0
gold_score_total, gold_words_total = 0, 0
for sent_idx, batch in enumerate(data_iter):
batch_data = translator.translate_batch(batch, data, sent_idx)
translations = builder.from_batch(batch_data)
for trans in translations:
pred_score_total += trans.pred_scores[0]
pred_words_total += len(trans.pred_sents[0])
if opt.tgt:
gold_score_total += trans.gold_score
gold_words_total += len(trans.gold_sent)
n_best_preds = [" ".join(pred)
for pred in trans.pred_sents[:opt.n_best]]
out_file.write('\n'.join(n_best_preds))
out_file.write('\n')
out_file.flush()
if opt.verbose:
sent_number = next(counter)
output = trans.log(sent_number)
os.write(1, output.encode('utf-8'))
_report_score('PRED', pred_score_total, pred_words_total)
if opt.tgt:
_report_score('GOLD', gold_score_total, gold_words_total)
if opt.report_bleu:
_report_bleu()
if opt.report_rouge:
_report_rouge()
if opt.dump_beam:
import json
json.dump(translator.beam_accum,
codecs.open(opt.dump_beam, 'w', 'utf-8'))
if __name__ == "__main__":
main()