-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmcts.py
241 lines (203 loc) · 9.49 KB
/
mcts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import argparse
import collections
import math
import time
import numpy as np
import pyffish as sf
from tqdm import tqdm
import uci
class UCTNode():
def __init__(self, game_state, move, parent=None):
self.game_state = game_state
self.move = move
self.is_expanded = False
self.parent = parent
self.children = {}
self.num_moves = len(self.game_state.legal_moves)
self.child_priors = np.zeros([self.num_moves], dtype=np.float32)
self.child_total_value = np.zeros([self.num_moves], dtype=np.float32)
self.child_number_visits = np.zeros([self.num_moves], dtype=np.float32)
@property
def number_visits(self):
return self.parent.child_number_visits[self.move]
@number_visits.setter
def number_visits(self, value):
self.parent.child_number_visits[self.move] = value
@property
def total_value(self):
return self.parent.child_total_value[self.move]
@total_value.setter
def total_value(self, value):
self.parent.child_total_value[self.move] = value
def child_Q(self):
return self.child_total_value / (1 + self.child_number_visits)
def child_U(self):
# use the bestmove information as a penalty on exploration for UCT
return 0.5 * np.sqrt(math.log(self.number_visits + 1) / (1 + self.child_number_visits + self.child_priors))
def best_child(self):
return np.argmax(self.child_Q() + self.child_U())
def select_leaf(self):
current = self
while current.is_expanded:
best_move = current.best_child()
current = current.maybe_add_child(best_move)
return current
def expand(self, child_priors):
self.is_expanded = True
self.child_priors = child_priors
def maybe_add_child(self, move):
if move not in self.children:
self.children[move] = UCTNode(self.game_state.play(move), move, parent=self)
return self.children[move]
def backup(self, value_estimate: float):
current = self
while current.parent is not None:
current.number_visits += 1
current.total_value += value_estimate * -current.game_state.side_to_move
current = current.parent
def best_move(self):
# pick best score in case of equal visit count
return np.argmax(self.child_number_visits + self.child_Q())
def pv(self):
current = self
while current.is_expanded:
best_move = current.best_move()
if best_move in current.children:
current = current.children[best_move]
else:
break
return current.game_state.get_san_moves()
def traverse(self, apply=lambda x: True):
if apply(self):
if not self.children:
return
for child in sorted(self.children.values(), key=lambda x: x.number_visits, reverse=True):
child.traverse(apply)
def __repr__(self):
fen = self.game_state.get_fen()
sans = [sf.get_san(self.game_state.variant, fen, m) for m in self.game_state.legal_moves]
moves = sorted(zip(sans, self.child_Q(), self.child_number_visits),
key=lambda x: x[2] + x[1], reverse=True)
return 'Position: {}\nMoves: {}'.format(self.game_state.get_fen(),
', '.join('{}: {:.4f} ({:.0f})'.format(*i) for i in moves if i[2]))
class PreRootNode(object):
def __init__(self):
self.parent = None
self.child_total_value = collections.defaultdict(float)
self.child_number_visits = collections.defaultdict(float)
@property
def number_visits(self):
return sum(self.child_number_visits.values())
class EnginePolicy():
def __init__(self, path, options, limits):
self.engine = uci.Engine([path], options)
self.engine.setoption('UCI_Variant', args.variant)
self.engine.newgame()
self.limits = limits
def evaluate(self, game_state):
num_moves = len(game_state.legal_moves)
if num_moves:
self.engine.position(game_state.fen, game_state.move_stack)
multipv = self.engine.go(**self.limits)
priors = np.ones([num_moves], dtype=np.float32) * multipv[1]['depth']
for info in multipv.values():
priors[game_state.legal_moves.index(info['pv'][0])] = max(multipv[1]['score'] - info['score'], 0) * info['depth']
return priors, multipv[1]['score'] * game_state.side_to_move
else:
result = sf.game_result(game_state.variant, game_state.fen, game_state.move_stack)
return None, (1 if result > 0 else -1 if result < 0 else 0) * game_state.side_to_move
class RandomPolicy():
@staticmethod
def evaluate(game_state):
num_moves = len(game_state.legal_moves)
if num_moves:
return np.zeros([num_moves], dtype=np.float32), np.random.triangular(-1, 0, 1)
else:
result = sf.game_result(game_state.variant, game_state.fen, game_state.move_stack)
return None, (1 if result > 0 else -1 if result < 0 else 0) * game_state.side_to_move
def uct_search(game_state, num_reads, policy):
root = UCTNode(game_state, move=None, parent=PreRootNode())
for _ in tqdm(range(num_reads)):
leaf = root.select_leaf()
child_priors, value_estimate = policy.evaluate(leaf.game_state)
if child_priors is not None:
leaf.expand(child_priors)
leaf.backup(value_estimate)
return root
class GameState():
def __init__(self, variant="chess", fen=None, moves=None):
self.variant = variant
self.fen = fen or sf.start_fen(variant)
self.move_stack = moves or []
self.side_to_move = 1 if (self.fen.split(" ")[1] == "w") == (len(self.move_stack) % 2 == 0) else -1
self.legal_moves = sf.legal_moves(self.variant, self.fen, self.move_stack)
def play(self, move):
new_move_stack = self.move_stack + [self.legal_moves[move]]
return GameState(self.variant, self.fen, new_move_stack)
def get_fen(self):
return sf.get_fen(self.variant, self.fen, self.move_stack)
def get_san_moves(self):
return sf.get_san_moves(self.variant, self.fen, self.move_stack)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--engine', help='chess variant engine path, e.g., to Fairy-Stockfish')
parser.add_argument('-o', '--ucioptions', type=lambda kv: kv.split("="), action='append', default=[],
help='UCI option as key=value pair. Repeat to add more options.')
parser.add_argument('-v', '--variant', default='chess', help='variant to analyze')
parser.add_argument('-f', '--fen', help='FEN to analyze')
parser.add_argument('-m', '--moves', default='', help='moves from FEN')
parser.add_argument('-r', '--rollouts', type=int, default=100, help='number of rollouts')
parser.add_argument('-d', '--depth', type=int, default=None, help='engine search depth')
parser.add_argument('-t', '--movetime', type=int, default=None, help='engine search movetime (ms)')
parser.add_argument('-p', '--print-tree', action='store_true', help='print search tree')
parser.add_argument('-b', '--export-book', help='export as EPD book')
parser.add_argument('--min-visits', type=int, default=5, help='only print/export nodes with minimum visit count')
parser.add_argument('--min-ratio', type=float, default=0.03, help='only print/export nodes with minimum visit ratio')
args = parser.parse_args()
# Init engine
limits = dict()
if args.depth:
limits['depth'] = args.depth
if args.movetime:
limits['movetime'] = args.movetime
if not limits:
limits['movetime'] = int(math.sqrt(args.rollouts))
options = dict(args.ucioptions)
sf.set_option('VariantPath', options.get('VariantPath', ''))
if args.variant not in sf.variants():
raise Exception('Variant {} not supported'.format(args.variant))
options.setdefault('multipv', '3')
if args.engine:
policy = EnginePolicy(args.engine, options, limits)
else:
policy = RandomPolicy()
# UCT search
root_pos = GameState(args.variant, args.fen, args.moves.split(' ') if args.moves else None)
start = time.perf_counter()
root_node = uct_search(root_pos, args.rollouts, policy)
end = time.perf_counter()
print('Runtime: {:.3f} s'.format(end - start))
try:
import resource
print('Memory: {} KB'.format(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss))
except ImportError:
pass
print('PV: {}'.format(' '.join(root_node.pv())))
print(root_node)
if args.print_tree:
def print_node(node):
if node.number_visits >= args.min_visits and node.number_visits / node.parent.number_visits >= args.min_ratio:
print('{}: {:.0f} ({:.3f})'.format(' '.join(node.game_state.get_san_moves()), node.number_visits,
node.total_value / node.number_visits))
return True
return False
print('\nTree')
root_node.traverse(apply=print_node)
if args.export_book:
with open(args.export_book, 'w') as epd:
def write_epd(node):
if node.number_visits >= args.min_visits and node.number_visits / node.parent.number_visits >= args.min_ratio:
epd.write(node.game_state.get_fen() + '\n')
return True
return False
root_node.traverse(apply=write_epd)