-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathmodel.py
601 lines (511 loc) · 22.9 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# -*- coding: utf-8 -*-
#
# The MIT License(MIT)
# Copyright Isaac Karth 2017
# Based on WaveFunctionCollapse in C#, which is Copyright(c) mxgmn 2016.
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# The software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software.
#
import math
import random
import xml.etree.ElementTree as ET
import collections
import uuid # used for tracking experiments
try:
import Image
except ImportError:
from PIL import Image
hackstring = ""
hackcount = 0
class Model:
def __init__(self, width, height):
#initialize
self.stationary = []
self.FMX = width
self.FMY = height
self.T = 2
#self.limit = 0
self.rng = random.Random() #todo: set rng
self.wave = [[[False for _ in range(self.T)] for _ in range(self.FMY)] for _ in range(self.FMX)]
self.changes = [[False for _ in range(self.FMY)] for _ in range(self.FMX)]
self.observed = None#[[0 for _ in range(self.FMY)] for _ in range(self.FMX)]
self.log_prob = 0
self.log_t = math.log(self.T)
self.observe_count = 0
self.count_prop_passes = 0
def Observe(self):
self.observe_count += 1
observed_min = 1e+3
observed_sum = 0
main_sum = 0
log_sum = 0
noise = 0
entropy = 0
argminx = -1
argminy = -1
amount = None
w = []
# Find the point of minimum entropy
for x in range(0, self.FMX):
for y in range(0, self.FMY):
if self.OnBoundary(x, y):
pass
else:
w = self.wave[x][y]
amount = 0
observed_sum = 0
t = 0
while t < self.T:
if w[t]:
amount += 1
observed_sum += self.stationary[t]
t += 1
if 0 == observed_sum:
return False
noise = 1e-6 * self.rng.random()
if 1 == amount:
entropy = 0
elif self.T == amount:
entropy = self.log_t
else:
main_sum = 0
log_sum = math.log(observed_sum)
t = 0
while t < self.T:
if w[t]:
main_sum += self.stationary[t] * self.log_prob[t]
t += 1
entropy = log_sum - main_sum / observed_sum
if entropy > 0 and (entropy + noise < observed_min):
observed_min = entropy + noise
argminx = x
argminy = y
# No minimum entropy, so mark everything as being observed...
if (-1 == argminx) and (-1 == argminy):
self.observed = [[0 for _ in range(self.FMY)] for _ in range(self.FMX)]
for x in range(0, self.FMX):
self.observed[x] = [0 for _ in range(self.FMY)]
for y in range(0, self.FMY):
for t in range(0, self.T):
if self.wave[x][y][t]:
self.observed[x][y] = t
break
return True
# A minimum point has been found, so prep it for propogation...
distribution = [0 for _ in range(0,self.T)]
for t in range(0,self.T):
distribution[t] = self.stationary[t] if self.wave[argminx][argminy][t] else 0
r = StuffRandom(distribution, self.rng.random())
for t in range(0,self.T):
self.wave[argminx][argminy][t] = (t == r)
self.changes[argminx][argminy] = True
return None
def Run(self, seed, limit):
self.log_t = math.log(self.T)
self.log_prob = [0 for _ in range(self.T)]
for t in range(0,self.T):
self.log_prob[t] = math.log(self.stationary[t])
self.Clear()
self.rng = random.Random()
self.rng.seed(seed)
l = 0
while (l < limit) or (0 == limit): # if limit == 0, then don't stop
l += 1
result = self.Observe()
if None != result:
return result
pcount = 0
presult = True
global hackcount
while(presult):
presult = self.Propagate()
self.Graphics().save("in_progress_{0}_{1}.png".format(hackstring, hackcount), format="PNG")
hackcount += 1
#print("Propagate: {0}".format(pcount))
pcount += 1
return True
def Propagate(self):
return False
def Clear(self):
for x in range(0,self.FMX):
for y in range(0, self.FMY):
for t in range(0, self.T):
self.wave[x][y][t] = True
self.changes[x][y] = False
def OnBoundary(self, x, y):
return True # Abstract, replaced in child classes
def Graphics(self):
return Image.new("RGB",(self.FMX, self.FMY),(0,0,0))
class OverlappingModel(Model):
def __init__(self, width, height, name, N_value = 2, periodic_input_value = True, periodic_output_value = False, symmetry_value = 8, ground_value = 0):
"""
Initializes the model.
"""
super( OverlappingModel, self).__init__(width, height)
self.propagator = [[[[]]]]
self.N = N_value
self.periodic = periodic_output_value
self.bitmap = Image.open("samples/{0}.png".format(name))
self.SMX = self.bitmap.size[0]
self.SMY = self.bitmap.size[1]
# .sample is an array of arrays that holds the index values for colors
# as found in the source image
self.sample = [[0 for _ in range(self.SMY)] for _ in range(self.SMX)]
# .colors is the list of colors that are found in the source image
self.colors = []
# This initializes the .sample array with the color index values.
# It loops over the pixels in the source bitmap, adds the color to the
# list of colors if it is new, and sets the .sample x,y value to the
# index of the color in the list of colors.
for y in range(0, self.SMY):
for x in range(0, self.SMX):
a_color = self.bitmap.getpixel((x, y))
color_exists = [c for c in self.colors if c == a_color]
if len(color_exists) < 1:
self.colors.append(a_color)
samp_result = [i for i,v in enumerate(self.colors) if v == a_color]
self.sample[x][y] = samp_result
self.color_count = len(self.colors)
self.W = StuffPower(self.color_count, self.N * self.N)
# The pattern matrix, as an array of arrays.
self.patterns= [[]]
#self.ground = 0
# A helper function to extract the neighboring cells from the sample
# matrix. Takes a function that translates (dx,dy) into a reference to
# a cell in the matrix.
def FuncPattern(passed_func):
result = [0 for _ in range(self.N * self.N)]
for y in range(0, self.N):
for x in range(0, self.N):
result[x + (y * self.N)] = passed_func(x, y)
return result
pattern_func = FuncPattern
def PatternFromSample(x, y):
'''
Takes the sample and returns the pattern for that (x,y) location.
'''
def innerPattern(dx, dy):
return self.sample[(x + dx) % self.SMX][(y + dy) % self.SMY]
return pattern_func(innerPattern)
def Rotate(p):
'''
Returns a rotated version of the pattern.
'''
return FuncPattern(lambda x, y: p[self.N - 1 - y + x * self.N])
def Reflect(p):
'''
Returns a reflected version of the pattern.
'''
return FuncPattern(lambda x, y: p[self.N - 1 - x + y * self.N])
def Index(p):
'''
Converts a color index into a powers-of-two representation for
bytewise storage.
'''
result = 0
power = 1
for i in range(0, len(p)):
result = result + (sum(p[len(p) - 1 - i]) * power)
power = power * self.color_count
return result
def PatternFromIndex(ind):
'''
Takes a pattern index and returns the pattern byte power index.
'''
residue = ind
power = self.W
result = [None for _ in range(self.N * self.N)]
for i in range(0, len(result)):
power = power / self.color_count
count = 0
while residue >= power:
residue = residue - power
count = count + 1
result[i] = count
return result
self.weights = collections.Counter()
ordering = []
# This chunk converts the sample to patterns.
# SMX and SMY are the sample size x and y.
# if periodic_input_value is true, the source image wraps around
ylimit = self.SMY - self.N + 1
xlimit = self.SMX - self.N + 1
if True == periodic_input_value:
ylimit = self.SMY
xlimit = self.SMX
for y in range (0, ylimit):
for x in range(0, xlimit):
ps = [0 for _ in range(8)]
ps[0] = PatternFromSample(x,y)
ps[1] = Reflect(ps[0])
ps[2] = Rotate(ps[0])
ps[3] = Reflect(ps[2])
ps[4] = Rotate(ps[2])
ps[5] = Reflect(ps[4])
ps[6] = Rotate(ps[4])
ps[7] = Reflect(ps[6])
for k in range(0,symmetry_value):
ind = Index(ps[k])
indexed_weight = collections.Counter({ind : 1})
self.weights = self.weights + indexed_weight
if not ind in ordering:
ordering.append(ind)
self.T = len(self.weights)
self.ground = int((ground_value + self.T) % self.T)
self.patterns = [[None] for _ in range(self.T)]
self.stationary = [None for _ in range(self.T)]
self.propagator = [[[[0]]] for _ in range(2 * self.N - 1)]
counter = 0
for w in ordering:
self.patterns[counter] = PatternFromIndex(w)
self.stationary[counter] = self.weights[w]
counter += 1
for x in range(0, self.FMX):
for y in range(0, self.FMY):
self.wave[x][y] = [False for _ in range(self.T)]
def Agrees(p1, p2, dx, dy):
ifany = True
xmin = dx
xmax = self.N
if dx < 0:
xmin = 0
xmax = dx + self.N
ymin = dy
ymax = self.N
if dy < 0:
ymin = 0
ymax = dy + self.N
for y in range(ymin, ymax):
for x in range(xmin, xmax):
if p1[x + self.N * y] != p2[x - dx + self.N * (y - dy)]:
print(p1[x + self.N * y] != p2[x - dx + self.N * (y - dy)])
ifany = False
#return False
return ifany
#return True
for x in range(0, 2 * self.N - 1):
self.propagator[x] = [[[0]] for _ in range(2 * self.N - 1)]
for y in range(0, 2 * self.N - 1):
self.propagator[x][y] = [[0] for _ in range(self.T)]
for t in range(0, self.T):
a_list = []
for t2 in range(0, self.T):
if Agrees(self.patterns[t], self.patterns[t2], x - self.N + 1, y - self.N + 1):
a_list.append(t2)
self.propagator[x][y][t] = [0 for _ in range(len(a_list))]
for c in range(0, len(a_list)):
self.propagator[x][y][t][c] = a_list[c]
return
def OnBoundary(self, x, y):
return (not self.periodic) and ((x + self.N > self.FMX ) or (y + self.N > self.FMY))
def Propagate(self):
change = False
b = False
#x2 = None
#y2 = None
for x1 in range(0, self.FMX):
for y1 in range(0, self.FMY):
if (self.changes[x1][y1]):
self.changes[x1][y1] = False
dx = (0 - self.N) + 1
while dx < self.N:
#for dx in range(1 - self.N, self.N):
dy = (0 - self.N) + 1
while dy < self.N:
#for dy in range(1 - self.N, self.N):
x2 = x1 + dx
if x2 < 0:
x2 += self.FMX
elif x2 >= self.FMX:
x2 -= self.FMX
y2 = y1 + dy
if y2 < 0:
y2 += self.FMY
elif y2 >= self.FMY:
y2 -= self.FMY
if (not self.periodic) and (x2 + self.N > self.FMX or y2 + self.N > self.FMY):
pass
else:
w1 = self.wave[x1][y1]
w2 = self.wave[x2][y2]
p = self.propagator[(self.N - 1) - dx][(self.N - 1) - dy]
for t2 in range(0,self.T):
if (not w2[t2]):
pass
else:
b = False
prop = p[t2]
#print("Prop: {0}".format(prop))
i_one = 0
while (i_one < len(prop)) and (False == b):
b = w1[prop[i_one]]
i_one += 1
if False == b:
self.changes[x2][y2] = True
change = True
w2[t2] = False
dy += 1
dx += 1
return change
def Graphics(self):
result = Image.new("RGB",(self.FMX, self.FMY),(0,0,0))
bitmap_data = list(result.getdata())
if(self.observed != None):
for y in range(0, self.FMY):
dy = self.N - 1
if (y < (self.FMY - self.N + 1)):
dy = 0
for x in range(0, self.FMX):
dx = 0
if (x < (self.FMX - self.N + 1)):
dx = self.N - 1
local_obsv = self.observed[x - dx][y - dy]
local_patt = self.patterns[local_obsv][dx + dy * self.N]
c = self.colors[local_patt]
#bitmap_data[x + y * self.FMX] = (0xff000000 | (c.R << 16) | (c.G << 8) | c.B)
if isinstance(c, (int, float)):
bitmap_data[x + y * self.FMX] = (c, c, c)
else:
bitmap_data[x + y * self.FMX] = (c[0], c[1], c[2])
else:
for y in range(0, self.FMY):
for x in range(0, self.FMX):
contributors = 0
r = 0
g = 0
b = 0
for dy in range(0, self.N):
for dx in range(0, self.N):
sx = x - dx
if sx < 0:
sx += self.FMX
sy = y - dy
if sy < 0:
sy += self.FMY
if (self.OnBoundary(sx, sy)):
pass
else:
for t in range(0, self.T):
if self.wave[sx][sy][t]:
contributors += 1
color = self.colors[self.patterns[t][dx + dy * self.N]]
if isinstance(color, (int, float)):
r = int(color)
g = int(color)
b = int(color)
else:
r += int(color[0])#.R
g += int(color[1])#.G
b += int(color[2])#.B
#bitmap_data[x + y * self.FMX] = (0xff000000 | ((r / contributors) << 16) | ((g / contributors) << 8) | (b / contributors))
if contributors > 0:
bitmap_data[x + y * self.FMX] = (int(r / contributors), int(g / contributors), int(b / contributors))
else:
print("WARNING: No contributors")
bitmap_data[x + y * self.FMX] = (int(r), int(g), int(b))
result.putdata(bitmap_data)
return result
def Clear(self):
super(OverlappingModel, self).Clear()
if(self.ground != 0 ):
for x in range(0, self.FMX):
for t in range(0, self.T):
if t != self.ground:
self.wave[x][self.FMY - 1][t] = False
self.changes[x][self.FMY - 1] = True
for y in range(0, self.FMY - 1):
self.wave[x][y][self.ground] = False
self.changes[x][y] = True
while self.Propagate():
pass
class SimpleTiledModel(Model):
def __init__(self, width, height, name, subset_name, periodic_value, black_value):
super( OverlappingModel, self).__init__(width, height)
self.propagator = [[[]]]
self.tiles = []
self.tilenames = []
self.tilesize = 0
self.black = False
self.periodic = periodic_value
self.black = black_value
#def getNextRandom():
# return random.random()
def StuffRandom(source_array, random_value):
a_sum = sum(source_array)
if 0 == a_sum:
for j in range(0, len(source_array)):
source_array[j] = 1
a_sum = sum(source_array)
for j in range(0, len(source_array)):
source_array[j] /= a_sum
i = 0
x = 0
while (i < len(source_array)):
x += source_array[i]
if random_value <= x:
return i
i += 1
return 0
def StuffPower(a, n):
product = 1
for i in range(0, n):
product *= a
return product
# TODO: finish StuffGet
def StuffGet(xml_node, xml_attribute, default_t):
s = ""
if s == "":
return default_t
return s
def string2bool(strn):
if isinstance(strn, bool):
return strn
return strn.lower() in ["true"]
class Program:
def __init__(self):
pass
def Main(self):
self.random = random.Random()
xdoc = ET.ElementTree(file="samples.xml")
counter = 1
for xnode in xdoc.getroot():
if("#comment" == xnode.tag):
continue
a_model = None
name = xnode.get('name', "NAME")
global hackstring
hackstring = name
print("< {0} ".format(name), end='')
if "overlapping" == xnode.tag:
#print(xnode.attrib)
a_model = OverlappingModel(int(xnode.get('width', 48)), int(xnode.get('height', 48)), xnode.get('name', "NAME"), int(xnode.get('N', 2)), string2bool(xnode.get('periodicInput', True)), string2bool(xnode.get('periodic', False)), int(xnode.get('symmetry', 8)), int(xnode.get('ground',0)))
pass
elif "simpletiled" == xnode.tag:
print("> ", end="\n")
continue
else:
continue
for i in range(0, int(xnode.get("screenshots", 2))):
for k in range(0, 10):
print("> ", end="")
seed = self.random.random()
finished = a_model.Run(seed, int(xnode.get("limit", 0)))
if finished:
print("DONE")
a_model.Graphics().save("{0}_{1}_{2}_{3}.png".format(counter, name, i, uuid.uuid4()), format="PNG")
break
else:
print("CONTRADICTION")
counter += 1
prog = Program()
prog.Main()
#a_model = OverlappingModel(8, 8, "Chess", 2, True, True, 8,0)
#a_model = OverlappingModel(48, 48, "Hogs", 3, True, True, 8,0)
#gseed = random.Random()
#finished = a_model.Run(364, 0)
#if(finished):
#test_img = a_model.Graphics()
#else:
# print("CONTRADICTION")
#test_img