-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathperfect_hash.py
600 lines (466 loc) · 19 KB
/
perfect_hash.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#!/usr/bin/env python
"""
Generate a minimal perfect hash function for the keys in a file,
desired hash values may be specified within this file as well.
A given code template is filled with parameters, such that the
output is code which implements the hash function.
Templates can easily be constructed for any programming language.
The code is based on an a program A.M. Kuchling wrote:
http://www.amk.ca/python/code/perfect-hash
The algorithm the program uses is described in the paper
'Optimal algorithms for minimal perfect hashing',
Z. J. Czech, G. Havas and B.S. Majewski.
http://cmph.sourceforge.net/papers/chm92.pdf
The algorithm works like this:
1. You have K keys, that you want to perfectly hash against some
desired hash values.
2. Choose a number N larger than K. This is the number of
vertices in a graph G, and also the size of the resulting table G.
3. Pick two random hash functions f1, f2, that return values from 0..N-1.
4. Now, for all keys, you draw an edge between vertices f1(key) and f2(key)
of the graph G, and associate the desired hash value with that edge.
5. If G is cyclic, go back to step 2.
6. Assign values to each vertex such that, for each edge, you can add
the values for the two vertices and get the desired (hash) value
for that edge. This task is easy, because the graph is acyclic.
This is done by picking a vertex, and assigning it a value of 0.
Then do a depth-first search, assigning values to new vertices so that
they sum up properly.
7. f1, f2, and vertex values of G now make up a perfect hash function.
For simplicity, the implementation of the algorithm combines steps 5 and 6.
That is, we check for loops in G and assign the vertex values in one procedure.
If this procedure succeeds, G is acyclic and the vertex values are assigned.
If the procedure fails, G is cyclic, and we go back to step 2, replacing G
with a new graph, and thereby discarding the vertex values from the failed
attempt.
"""
from __future__ import absolute_import, division, print_function
import sys
import random
import string
import subprocess
import shutil
import tempfile
from collections import defaultdict
from os.path import join
if sys.version_info[0] == 2:
from cStringIO import StringIO
else:
from io import StringIO
__version__ = '0.4.4'
verbose = False
trials = 5
class Graph(object):
"""
Implements a graph with 'N' vertices. First, you connect the graph with
edges, which have a desired value associated. Then the vertex values
are assigned, which will fail if the graph is cyclic. The vertex values
are assigned such that the two values corresponding to an edge add up to
the desired edge value (mod N).
"""
def __init__(self, N):
self.N = N # number of vertices
# maps a vertex number to the list of tuples (vertex, edge value)
# to which it is connected by edges.
self.adjacent = defaultdict(list)
def connect(self, vertex1, vertex2, edge_value):
"""
Connect 'vertex1' and 'vertex2' with an edge, with associated
value 'value'
"""
# Add vertices to each other's adjacent list
self.adjacent[vertex1].append((vertex2, edge_value))
self.adjacent[vertex2].append((vertex1, edge_value))
def assign_vertex_values(self):
"""
Try to assign the vertex values, such that, for each edge, you can
add the values for the two vertices involved and get the desired
value for that edge, i.e. the desired hash key.
This will fail when the graph is cyclic.
This is done by a Depth-First Search of the graph. If the search
finds a vertex that was visited before, there's a loop and False is
returned immediately, i.e. the assignment is terminated.
On success (when the graph is acyclic) True is returned.
"""
self.vertex_values = self.N * [-1] # -1 means unassigned
visited = self.N * [False]
# Loop over all vertices, taking unvisited ones as roots.
for root in range(self.N):
if visited[root]:
continue
# explore tree starting at 'root'
self.vertex_values[root] = 0 # set arbitrarily to zero
# Stack of vertices to visit, a list of tuples (parent, vertex)
tovisit = [(None, root)]
while tovisit:
parent, vertex = tovisit.pop()
visited[vertex] = True
# Loop over adjacent vertices, but skip the vertex we arrived
# here from the first time it is encountered.
skip = True
for neighbor, edge_value in self.adjacent[vertex]:
if skip and neighbor == parent:
skip = False
continue
if visited[neighbor]:
# We visited here before, so the graph is cyclic.
return False
tovisit.append((vertex, neighbor))
# Set new vertex's value to the desired edge value,
# minus the value of the vertex we came here from.
self.vertex_values[neighbor] = (
edge_value - self.vertex_values[vertex]) % self.N
# check if all vertices have a valid value
for vertex in range(self.N):
assert self.vertex_values[vertex] >= 0
# We got though, so the graph is acyclic,
# and all values are now assigned.
return True
class StrSaltHash(object):
"""
Random hash function generator.
Simple byte level hashing: each byte is multiplied to another byte from
a random string of characters, summed up, and finally modulo NG is
taken.
"""
chars = string.ascii_letters + string.digits
def __init__(self, N):
self.N = N
self.salt = ''
def __call__(self, key):
while len(self.salt) < len(key): # add more salt as necessary
self.salt += random.choice(self.chars)
return sum(ord(self.salt[i]) * ord(c)
for i, c in enumerate(key)) % self.N
template = """
def hash_f(key, T):
return sum(ord(T[i % $NS]) * ord(c) for i, c in enumerate(key)) % $NG
def perfect_hash(key):
return (G[hash_f(key, "$S1")] +
G[hash_f(key, "$S2")]) % $NG
"""
class IntSaltHash(object):
"""
Random hash function generator.
Simple byte level hashing, each byte is multiplied in sequence to a table
containing random numbers, summed tp, and finally modulo NG is taken.
"""
def __init__(self, N):
self.N = N
self.salt = []
def __call__(self, key):
while len(self.salt) < len(key): # add more salt as necessary
self.salt.append(random.randrange(1, self.N))
return sum(self.salt[i] * ord(c)
for i, c in enumerate(key)) % self.N
template = """
S1 = [$S1]
S2 = [$S2]
assert len(S1) == len(S2) == $NS
def hash_f(key, T):
return sum(T[i % $NS] * ord(c) for i, c in enumerate(key)) % $NG
def perfect_hash(key):
return (G[hash_f(key, S1)] + G[hash_f(key, S2)]) % $NG
"""
def builtin_template(Hash):
return """\
# =======================================================================
# ================= Python code for perfect hash function ===============
# =======================================================================
G = [$G]
""" + Hash.template + """
# ============================ Sanity check =============================
K = [$K]
assert len(K) == $NK
for h, k in enumerate(K):
assert perfect_hash(k) == h
"""
class TooManyInterationsError(Exception):
pass
def generate_hash(keys, Hash=StrSaltHash):
"""
Return hash functions f1 and f2, and G for a perfect minimal hash.
Input is an iterable of 'keys', whos indicies are the desired hash values.
'Hash' is a random hash function generator, that means Hash(N) returns a
returns a random hash function which returns hash values from 0..N-1.
"""
if not isinstance(keys, (list, tuple)):
raise TypeError("list or tuple expected")
NK = len(keys)
if NK != len(set(keys)):
raise ValueError("duplicate keys")
for key in keys:
if not isinstance(key, str):
raise TypeError("key a not string: %r" % key)
if NK > 10000 and Hash == StrSaltHash:
print("""\
WARNING: You have %d keys.
Using --hft=1 is likely to fail for so many keys.
Please use --hft=2 instead.
""" % NK)
# the number of vertices in the graph G
NG = NK + 1
if verbose:
print('NG = %d' % NG)
trial = 0 # Number of trial graphs so far
while True:
if (trial % trials) == 0: # trials failures, increase NG slightly
if trial > 0:
NG = max(NG + 1, int(1.05 * NG))
if verbose:
sys.stdout.write('\nGenerating graphs NG = %d ' % NG)
trial += 1
if NG > 100 * (NK + 1):
raise TooManyInterationsError("%d keys" % NK)
if verbose:
sys.stdout.write('.')
sys.stdout.flush()
G = Graph(NG) # Create graph with NG vertices
f1 = Hash(NG) # Create 2 random hash functions
f2 = Hash(NG)
# Connect vertices given by the values of the two hash functions
# for each key. Associate the desired hash value with each edge.
for hashval, key in enumerate(keys):
G.connect(f1(key), f2(key), hashval)
# Try to assign the vertex values. This will fail when the graph
# is cyclic. But when the graph is acyclic it will succeed and we
# break out, because we're done.
if G.assign_vertex_values():
break
if verbose:
print('\nAcyclic graph found after %d trials.' % trial)
print('NG = %d' % NG)
# Sanity check the result by actually verifying that all the keys
# hash to the right value.
for hashval, key in enumerate(keys):
assert hashval == (
G.vertex_values[f1(key)] + G.vertex_values[f2(key)]
) % NG
if verbose:
print('OK')
return f1, f2, G.vertex_values
class Format(object):
def __init__(self, width=76, indent=4, delimiter=', '):
self.width = width
self.indent = indent
self.delimiter = delimiter
def print_format(self):
print("Format options:")
for name in 'width', 'indent', 'delimiter':
print(' %s: %r' % (name, getattr(self, name)))
def __call__(self, data, quote=False):
if not isinstance(data, (list, tuple)):
return str(data)
lendel = len(self.delimiter)
aux = StringIO()
pos = 20
for i, elt in enumerate(data):
last = bool(i == len(data) - 1)
s = ('"%s"' if quote else '%s') % elt
if pos + len(s) + lendel > self.width:
aux.write('\n' + (self.indent * ' '))
pos = self.indent
aux.write(s)
pos += len(s)
if not last:
aux.write(self.delimiter)
pos += lendel
return aux.getvalue()
def generate_code(keys, Hash=StrSaltHash, template=None, options=None):
"""
Takes a list of key value pairs and inserts the generated parameter
lists into the 'template' string. 'Hash' is the random hash function
generator, and the optional keywords are formating options.
The return value is the substituted code template.
"""
f1, f2, G = generate_hash(keys, Hash)
assert f1.N == f2.N == len(G)
try:
salt_len = len(f1.salt)
assert salt_len == len(f2.salt)
except TypeError:
salt_len = None
if template is None:
template = builtin_template(Hash)
if options is None:
fmt = Format()
else:
fmt = Format(width=options.width, indent=options.indent,
delimiter=options.delimiter)
if verbose:
fmt.print_format()
return string.Template(template).substitute(
NS = salt_len,
S1 = fmt(f1.salt),
S2 = fmt(f2.salt),
NG = len(G),
G = fmt(G),
NK = len(keys),
K = fmt(list(keys), quote=True))
def read_table(filename, options):
"""
Reads keys and desired hash value pairs from a file. If no column
for the hash value is specified, a sequence of hash values is generated,
from 0 to N-1, where N is the number of rows found in the file.
"""
if verbose:
print("Reading table from file `%s' to extract keys." % filename)
try:
fi = open(filename)
except IOError:
sys.exit("Error: Could not open `%s' for reading." % filename)
keys = []
if verbose:
print("Reader options:")
for name in 'comment', 'splitby', 'keycol':
print(' %s: %r' % (name, getattr(options, name)))
for n, line in enumerate(fi):
line = line.strip()
if not line or line.startswith(options.comment):
continue
if line.count(options.comment): # strip content after comment
line = line.split(options.comment)[0].strip()
row = [col.strip() for col in line.split(options.splitby)]
try:
key = row[options.keycol - 1]
except IndexError:
sys.exit("%s:%d: Error: Cannot read key, not enough columns." %
(filename, n + 1))
keys.append(key)
fi.close()
if not keys:
exit("Error: no keys found in file `%s'." % filename)
return keys
def read_template(filename):
if verbose:
print("Reading template from file `%s'" % filename)
try:
with open(filename, 'r') as fi:
return fi.read()
except IOError:
sys.exit("Error: Could not open `%s' for reading." % filename)
def run_code(code):
tmpdir = tempfile.mkdtemp()
path = join(tmpdir, 't.py')
with open(path, 'w') as fo:
fo.write(code)
try:
subprocess.check_call([sys.executable, path])
except subprocess.CalledProcessError as e:
raise AssertionError(e)
finally:
shutil.rmtree(tmpdir)
def main():
import argparse
description = """\
Generates code for perfect hash functions from
a file with keywords and a code template.
If no template file is provided, a small built-in Python template
is processed and the output code is written to stdout.
"""
p = argparse.ArgumentParser(
description=description,
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
p.add_argument('KEYS_FILE', nargs=1,
help="file containing keys for perfect hash function")
p.add_argument('TMPL_FILE', nargs="?",
help="code template file, must contain 'tmpl' in filename")
p.add_argument("--delimiter", action="store", default=", ",
help="Delimiter for list items used in output.",
metavar="STR")
p.add_argument("--indent", action="store", default=4, type=int,
help="Make INT spaces at the beginning of a "
"new line when generated list is wrapped.",
metavar="INT")
p.add_argument("--width", action="store", default=76, type=int,
help="Maximal width of generated list when wrapped.",
metavar="INT")
p.add_argument("--comment", action="store", default="#",
help="STR is the character, or sequence of characters, "
"which marks the beginning of a comment (which runs "
" till the end of the line), in the input KEYS_FILE.",
metavar="STR")
p.add_argument("--splitby", action="store", default = ",",
help="STR is the character by which the columns "
"in the input KEYS_FILE are split.",
metavar="STR")
p.add_argument("--keycol", action="store", default=1, type=int,
help="Specifies the column INT in the input "
"KEYS_FILE which contains the keys.",
metavar="INT")
p.add_argument("--trials", action="store", default=5, type=int,
help="Specifies the number of trials before NG is "
"increased. A small INT will give compute faster, "
"but the array G will be large. A large INT will "
"take longer to compute but G will be smaller.",
metavar="INT")
p.add_argument("--hft", action="store", default=1, type=int,
help="Hash function type INT. Possible values "
"are 1 (StrSaltHash) and 2 (IntSaltHash).",
metavar="INT")
p.add_argument("-e", "--execute", action="store_true",
help="execute generated code within Python interpreter")
p.add_argument("-o", "--output", action="store",
help="Specify output FILE explicitly. "
"`-o std' means standard output. "
"`-o no' means no output. "
"By default, the file name is obtained "
"from the name of the template file by "
"substituting `tmpl' to `code'.",
metavar="FILE")
p.add_argument("-v", "--verbose", action="store_true")
args = p.parse_args()
if args.trials <= 0:
p.error("trials before increasing N has to be larger than zero")
global trials, verbose
trials = args.trials
verbose = args.verbose
if args.TMPL_FILE and not args.TMPL_FILE.count('tmpl'):
p.error("template filename does not contain 'tmpl'")
if args.hft == 1:
Hash = StrSaltHash
elif args.hft == 2:
Hash = IntSaltHash
else:
p.error("Hash function %s not implemented." % args.hft)
# --------------------- end parsing and checking --------------
keys_file = args.KEYS_FILE[0]
if verbose:
print("keys_file = %r" % keys_file)
keys = read_table(keys_file, args)
if verbose:
print("Number os keys: %d" % len(keys))
tmpl_file = args.TMPL_FILE
if verbose:
print("tmpl_file = %r" % tmpl_file)
template = read_template(tmpl_file) if tmpl_file else None
if args.output:
outname = args.output
else:
if tmpl_file:
if 'tmpl' not in tmpl_file:
sys.exit("Hmm, template filename does not contain 'tmpl'")
outname = tmpl_file.replace('tmpl', 'code')
else:
outname = 'std'
if verbose:
print("outname = %r\n" % outname)
if outname == 'std':
outstream = sys.stdout
elif outname == 'no':
outstream = None
else:
try:
outstream = open(outname, 'w')
except IOError:
sys.exit("Error: Could not open `%s' for writing." % outname)
code = generate_code(keys, Hash, template, args)
if args.execute or template == builtin_template(Hash):
if verbose:
print('Executing code...\n')
run_code(code)
if outstream:
outstream.write(code)
outstream.close()
if __name__ == '__main__':
main()