-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathidaccaunt.py
182 lines (145 loc) · 8.82 KB
/
idaccaunt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import streamlit as st
import requests
import time
import pandas as pd
import numpy as np
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score
from catboost import CatBoostClassifier
from sklearn.linear_model import RidgeClassifier
from sklearn.preprocessing import LabelEncoder
class ModelAPI:
def __init__(self, host: str, port: int):
self.base_url = f"{host}:{port}/api/v1/models"
def fit_model(self, params: dict):
"""Отправка параметров для обучения модели."""
response = requests.post(f"{self.base_url}/fit", json=params)
return response.json()
def get_model_info(self, model_id: str):
"""Получение информации об обученной модели."""
response = requests.get(f"{self.base_url}/info/{model_id}")
return response.json()
host = "http://****" # Замените на рабочий хост
port = 8000 # Замените на рабочий порт
api_client = ModelAPI(host, port)
st.title("Модель по анализу данных")
if 'page' not in st.session_state:
st.session_state.page = "🔄 Обучение модели"
col1, col2 = st.sidebar.columns(2)
with col1:
if st.button("🔄 Обучение модели"):
st.session_state.page = "🔄 Обучение модели"
with col2:
if st.button("ℹ️ Информация о модели"):
st.session_state.page = "ℹ️ Информация о модели"
if st.session_state.page == "🔄 Обучение модели":
st.header("Обучение модели")
type_of_model = st.selectbox("Выберите модель", ["⚖️ Ridge Classifier", "🧠 CatBoost Classifier"])
params = {"type_of_model": type_of_model}
st.subheader("Гиперпараметры модели")
if type_of_model == "⚖️ Ridge Classifier":
params["alpha"] = st.number_input("Alpha", value=1.0, min_value=0.0)
params["fit_intercept"] = st.checkbox("Fit Intercept", value=True)
elif type_of_model == "🧠 CatBoost Classifier":
params["learning_rate"] = st.number_input("Learning Rate", value=0.1, min_value=0.01, max_value=1.0)
params["depth"] = st.slider("Depth", min_value=1, max_value=16, value=6)
params["iterations"] = st.number_input("Iterations", value=100, min_value=1)
params["l2_leaf_reg"] = st.number_input("L2 Leaf Regularization", value=3, min_value=1, max_value=10)
params["model_id"] = st.text_input("Введите ID модели", value="model")
uploaded_file = st.file_uploader("📤 Загрузите данные (CSV)", type=["csv"])
if uploaded_file is not None:
data = pd.read_csv(uploaded_file)
st.write("Данные:")
st.write(data.head())
target_column = "radiant_win"
if target_column in data.columns:
X = data.drop(columns=[target_column])
y = data[target_column]
# Обработка категориальных переменных
categorical_cols = X.select_dtypes(include=['object']).columns
if type_of_model == "🧠 CatBoost Classifier":
cat_features_indices = [X.columns.get_loc(col) for col in categorical_cols] # Индексы категориальных признаков
else:
for col in categorical_cols:
le = LabelEncoder()
X[col] = le.fit_transform(X[col].astype(str)) # Преобразуем категориальные признаки в числовые
st.subheader(f"Целевая переменная: {target_column}")
st.write(y.value_counts())
# Если в данных есть столбец 'account_id', добавляем выбор
if 'account_id' in data.columns:
account_ids = data['account_id'].unique()
selected_account_id = st.selectbox("Выберите Account ID", account_ids)
# Фильтрация данных по выбранному account_id
account_data = data[data['account_id'] == selected_account_id]
else:
st.warning("В данных отсутствует столбец 'account_id'.")
account_data = None
else:
st.error(f"Целевая переменная '{target_column}' не найдена в данных.")
st.stop()
if st.button("🚀 Обучить модель"):
params["train_data"] = data.to_dict(orient="list")
start_time = time.time()
if type_of_model == "⚖️ Ridge Classifier":
model = RidgeClassifier(alpha=params["alpha"], fit_intercept=params["fit_intercept"])
elif type_of_model == "🧠 CatBoost Classifier":
model = CatBoostClassifier(
learning_rate=params["learning_rate"],
depth=params["depth"],
iterations=params["iterations"],
l2_leaf_reg=params["l2_leaf_reg"],
cat_features=cat_features_indices, # Передаем индексы категориальных признаков
verbose=False)
st.write("Кросс-валидация началась")
kf = KFold(n_splits=5, shuffle=True, random_state=42)
fold_results = []
for train_index, test_index in kf.split(X):
X_train, X_test = X.iloc[train_index], X.iloc[test_index]
y_train, y_test = y.iloc[train_index], y.iloc[test_index]
model.fit(X_train, y_train)
predictions = model.predict(X_test)
accuracy = accuracy_score(y_test, predictions)
fold_results.append(accuracy)
mean_accuracy = np.mean(fold_results)
std_accuracy = np.std(fold_results)
end_time = time.time()
st.success("✅ Модель обучена!")
st.write(f"⏳ Время обучения составило: {end_time - start_time:.2f} сек")
st.write("📊 Результаты кросс-валидации:")
st.write(pd.DataFrame({"Fold": range(1, 6), "Accuracy": fold_results}))
st.write(f"🏆 Средняя точность: {mean_accuracy:.4f}")
st.write(f"📉 Стандартное отклонение точности: {std_accuracy:.4f}")
if type_of_model == "🧠 CatBoost Classifier":
feature_importances = model.get_feature_importance()
feature_importances_df = pd.DataFrame({
"Feature": X.columns,
"Importance": feature_importances
}).sort_values(by="Importance", ascending=False)
st.write("📈 Важность признаков:")
st.bar_chart(feature_importances_df.set_index("Feature"))
# Новая функциональность для предсказания вероятности победы
if account_data is not None and len(account_data) > 0:
account_features = account_data.drop(columns=[target_column]) # Убираем целевую переменную
if type_of_model == "⚖️ Ridge Classifier":
probability = model.decision_function(account_features)
else: # Для CatBoost используем predict_proba
probability = model.predict_proba(account_features)[:, 1]
st.write(f"Вероятность победы для Account ID {selected_account_id}: {probability[0]:.2f}")
elif st.session_state.page == "ℹ️ Информация о модели":
st.header("Информация о модели")
model_id = st.text_input("Введите ID модели для получения информации", value="model")
if st.button("📖 Получить информацию о модели"):
model_info = api_client.get_model_info(model_id)
if model_info:
st.write("📝 Информация о модели:")
st.json(model_info)
if "feature_importances" in model_info:
st.write("📊 Важность признаков:")
feature_importances = model_info["feature_importances"]
feature_importances_df = pd.DataFrame({
"Feature": feature_importances.keys(),
"Importance": feature_importances.values()
}).sort_values(by="Importance", ascending=False)
st.bar_chart(feature_importances_df.set_index("Feature"))
else:
st.error("❌ Такой модельки нет, sorry :(")