-
Notifications
You must be signed in to change notification settings - Fork 2
/
encoder.py
509 lines (397 loc) · 17.1 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
import logging
import build_tree
import random
PI = torch.acos(torch.tensor(-1.0))
inf = 1e10
def swap_dim(ans, dim1, dim2):
return ans.transpose(dim1, dim2)
def transpose(ans, dim=-2):
return swap_dim(ans, -1, dim)
def make_lowrk(idim, odim, rank):
if rank * (idim + odim) < idim * odim:
return nn.Sequential(
torch.nn.Linear(idim, rank, bias=False),
torch.nn.Linear(rank, odim)
)
return nn.Linear(idim, odim)
def convert_lowrk(model, rank):
return make_lowrk(model.in_features, model.out_features, rank).to(model.weight.device)
class FC(torch.nn.Module):
def __init__(self, idim, odim, init=0.25, dim=-1, bn=True, flatten=None):
super(FC, self).__init__()
self.dim = dim
self.flatten = flatten
self.idim = idim
self.odim = odim
self.linear = nn.Linear(idim, odim)
if init is None:
self.relu = lambda x : x
elif init is False:
self.relu = nn.ReLU()
else:
self.relu = nn.PReLU(init=init)
if bn:
self.bn = torch.nn.BatchNorm1d(odim)
def calc_bn(x):
if len(x.shape) == 2:
return self.bn(x)
return self.bn(x.transpose(-1, -2)).transpose(-1, -2)
self._bn = calc_bn
else:
self._bn = lambda x : x
def forward(self, ans, dim=None):
if dim is None:
dim = self.dim
ans = transpose(ans, dim=dim)
if self.flatten is not None:
shape = ans.shape
fl = len(self.flatten)
ans = ans.reshape(*shape[:-fl], self.idim)
# assert ans.size(-1) == self.idim
ans = self.relu(self._bn(self.linear(ans)))
if self.flatten is not None:
ans = ans.reshape(*shape[:-fl], *self.flatten)
ans = transpose(ans, dim=dim)
return ans
class MLP(torch.nn.Module):
def __init__(self, dims, init=0.25, last_relu=False, bn=True, last_bn=True, last_dropout=None):
super(MLP, self).__init__()
layers = []
for i in range(1, len(dims)):
is_last = (i == len(dims) - 1)
no_relu = is_last and not last_relu
no_bn = is_last and not last_bn
if i == len(dims) - 1 and last_dropout is not None:
layers.append(torch.nn.Dropout(last_dropout))
layers.append(FC(dims[i - 1], dims[i], init=None if no_relu else init, bn=bn and not no_bn))
self.layers = nn.ModuleList(layers)
def forward(self, ans):
for l in self.layers:
ans = l(ans)
return ans
class Alignment(torch.nn.Module):
def __init__(self, k, k_in=None, use_attn=False):
super(Alignment, self).__init__()
self.k = k
if k_in is None:
k_in = k
self.k_in = k_in
if use_attn:
self.attn = Attention(512, 512, 512, 64, embed_dim=64, head=8)
else:
self.attn = None
self.conv1 = torch.nn.Conv1d(k_in, 128, 1)
self.conv2 = torch.nn.Conv1d(128, 256, 1)
self.conv3 = torch.nn.Conv1d(256, 512 if use_attn else 1024, 1)
self.fc1 = nn.Linear(1024, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, k * k)
self.relu = nn.ReLU()
self.bn1 = nn.BatchNorm1d(128)
self.bn2 = nn.BatchNorm1d(256)
self.bn3 = nn.BatchNorm1d(512 if use_attn else 1024)
self.bn4 = nn.BatchNorm1d(512)
self.bn5 = nn.BatchNorm1d(256)
def forward(self, points, points_in=None):
k = self.k
# print(points.shape, points_in.shape)
if points_in is None:
points_in = points
assert len(points.shape) == 3
assert points_in.shape[-1] == self.k_in
x = points_in.transpose(-1, -2)
x = self.relu(self.bn1(self.conv1(x)))
x = self.relu(self.bn2(self.conv2(x)))
x = self.bn3(self.conv3(x))
if self.attn is not None:
xt = x.transpose(-1, -2)
attn = self.attn(xt, xt, xt)
x = torch.cat([x, attn.transpose(-1, -2)], dim=1)
x = torch.max(x, 2)[0]
x = x.view(-1, 1024)
x = self.relu(self.bn4(self.fc1(x)))
x = self.relu(self.bn5(self.fc2(x)))
x = self.fc3(x)
I = torch.eye(k, device='cuda')
x = x.reshape(-1, k, k) + I
self.align_reg_loss = 0. #(x.bmm(x.transpose(-1, -2)) - I).pow(2).sum(dim=(-1, -2)).mean()
return torch.bmm(points, x)
class EncoderLayer(torch.nn.Module):
def __init__(self, ind, layer_type, idim, odim, sdim=None,
dropout=0.5, relu_weight=0.005, srate=0.25, dense_mlp=False, skip_same_dim=False,
layer0_mlp_dim=1024, extra_dim=0, catmlp=False):
super(EncoderLayer, self).__init__()
self.ind = ind
self.layer_type = layer_type
self.idim = idim
self.odim = odim
self.sdim = sdim
self.srate = srate
self.feature_dim = odim
self.relu_weight = relu_weight
self.catmlp = catmlp
if layer_type == 'leaf':
if idim == 3:
self.extra_dim = extra_dim
if extra_dim > 0:
idim += extra_dim
self.pts_align = Alignment(3, 3 + extra_dim)
else:
self.pts_align = Alignment(3)
else:
self.extra_dim = 0
self.pts_align = torch.nn.Identity()
self.mlp = MLP([idim, layer0_mlp_dim, odim], init=relu_weight)
# self.mlp = MLP([idim, odim * 4, odim], init=relu_weight)
else:
if idim == odim and skip_same_dim and layer_type != 'sampled':
self.upload = torch.nn.Identity()
else:
if not self.catmlp:
self.upload = MLP([idim, odim * 2, odim] if dense_mlp else [idim, odim], init=relu_weight)
else:
self.upload = nn.ModuleList([
nn.ModuleList([
MLP([idim, odim], init=relu_weight) for _ in range(2)
]) for _ in range(3)
])
if layer_type == 'sampled':
# self.upload_sample = MLP([sdim, idim, odim], init=relu_weight)
self.merge_sample = MLP([odim + sdim, odim * 2, odim] if dense_mlp else [odim + sdim, odim], init=relu_weight)
# if ind in [2, 4, 6]:
# self.align = Alignment(odim)
# else:
# self.align = lambda x : x
self.dropout = lambda x : x # nn.Dropout(dropout)
def forward(self, ans, line=None, sample=None, vec=None, dmap=None, drev=None):
if self.layer_type[0] == 'l':
if self.extra_dim > 0:
_1, _2 = ans.split([3, self.extra_dim], -1)
ans = torch.cat([self.pts_align(_1, points_in=ans), _2], dim=-1)
else:
ans = self.pts_align(ans)
ans = self.mlp(ans)
else:
# ans = self.merge(torch.cat([ans[:, self.child_l], ans[:, self.child_r]], dim=-1))
if not self.catmlp:
ans = self.upload(ans[:, self.child_lr]).reshape(ans.size(0), 2, -1, self.odim).max(dim=1)[0]
else:
out = torch.zeros([ans.size(0), ans.size(1) // 2, self.odim], device='cuda')
lch = ans[:, self.child_l]
rch = ans[:, self.child_r]
for k, ch in enumerate([lch, rch]):
for d in range(3):
sgn = (line[:, :, d] > 0).long()
for s in range(2):
mask = (sgn == (s ^ k))
out[mask] += self.upload[d][s](ch)[mask]
ans = out
if self.layer_type[0] == 's':
# sr = self.srate / (1 + self.srate)
# smp = self.upload_sample(sample[:, self.child_s])
# replaced = torch.bernoulli(torch.full_like(ans, sr).cuda()).bool()
# ans = ans.masked_scatter(replaced, smp[replaced])
smp = sample[:, self.child_s]
ans = self.merge_sample(torch.cat([ans, smp], dim=-1))
# ans = self.max(ans, self.upload_sample(smp))
# ans = self.align(ans)
return self.dropout(ans)
class Encoder(torch.nn.Module):
def __init__(self, N, sample_layers, dim, OUTPUT,
extra_dim=0, point_dim=3, dim_layer0=16, layer0_mlp_dim=1024, dim_repeat_cut=4, rotate=True, use_symmetry_loss=False,
channel=1, sample_child_first=True, skip_same_dim=False, catmlp=False):
super(Encoder, self).__init__()
assert channel == 1
self.N = N
self.OUTPUT = OUTPUT
self.num_layers = -1
self.layers = None
self.dim = dim
self.odim = dim
self.idim = point_dim
layer_dict = None
self.tree = build_tree.BuildTree(N, sample_layers, sample_child_first=sample_child_first,
use_symmetry_loss=use_symmetry_loss, record_vec=catmlp)
# generate tree structure
# os.system("g++ build_tree.cpp -o build_tree -O2 -std=c++14 -Wall")
# os.system(f"./build_tree {sample_layers} struct {N} > {OUTPUT}/struct.txt")
cur_layer = -1
def pmap(layer, p):
p = int(p)
if layer < 0 or p == -1:
return [-1]
if p not in layer_dict[layer]:
layer_dict[layer][p] = [len(layer_dict[layer])]
return layer_dict[layer][p]
for line in self.tree.structure():
if len(line) == 0:
continue
if line[0] == 'size':
self.N = N = int(line[1])
elif line[0] == 'sample':
self.sample_layers = int(line[1])
assert self.sample_layers == sample_layers
elif line[0] == 'layer':
if self.num_layers == -1:
self.num_layers = int(line[1]) + 1
layer_dict = [dict() for _ in range(self.num_layers)]
cur_layer = int(line[1])
else:
data = pmap(cur_layer, line[1])
data.append(int(line[2])) # real point id
data.append(pmap(cur_layer + 1, line[3])[0]) # child l
data.append(pmap(cur_layer + 1, line[4])[0]) # child r
data.append(pmap(cur_layer + self.sample_layers, line[5])[0]) # child sample
logging.info(f'self.N = {N}')
logging.info(f'self.num_layers = {self.num_layers}')
logging.info(f'self.sample_layers = {self.sample_layers}')
self.layers = []
feature_dim = dim_layer0
dim_repeat = 1
odims = [-1] * 100
for i in reversed(range(self.num_layers)):
layer_type = 'sampled'
if i + self.sample_layers >= self.num_layers:
layer_type = 'unsampled'
if i + 1 == self.num_layers:
layer_type = 'leaf'
if layer_type != 'leaf':
idim = feature_dim
if odims[-dim_repeat] in ([-1, feature_dim] if dim_repeat_cut != 0 else [feature_dim]):
feature_dim = min(feature_dim * 2, self.dim)
odim = feature_dim
else:
idim = point_dim
odim = feature_dim
sdim = None
if layer_type == 'sampled':
sdim = odims[-self.sample_layers]
odims.append(odim)
data = layer_dict[i]
layer = EncoderLayer(len(self.layers), layer_type, idim, odim,
sdim=sdim,
relu_weight=0.25,
dropout=min(0.1 * (1.2 ** len(self.layers)), 0.5),
srate=2 ** -sample_layers,
dense_mlp=False, # len(self.layers) <= dim_repeat_cut,
skip_same_dim=skip_same_dim,
layer0_mlp_dim=layer0_mlp_dim,
extra_dim=extra_dim,
catmlp=catmlp,
)
layer.num_nodes = len(data)
data = sorted(data.values(), key=lambda x : x[0])
if layer_type != 'leaf':
layer.child_l = torch.tensor([l for _, _, l, _, _ in data]).cuda()
layer.child_r = torch.tensor([r for _, _, _, r, _ in data]).cuda()
layer.child_lr = torch.cat([layer.child_l, layer.child_r], dim=0)
if layer_type == 'sampled':
layer.child_s = torch.tensor([s for _, _, _, _, s in data]).cuda()
self.layers.append(layer)
if len(self.layers) >= dim_repeat_cut:
dim_repeat = 2
logging.info(f"layer {layer.ind} ({layer_type}) # = {layer.num_nodes} odim = {odim}")
self.layers = nn.ModuleList(self.layers)
def directions(self):
d = build_tree.get_directions().clone()
return d
def forward(self, ans, inputs, extra, perm=None):
self.layer_output = []
self.arrange = inputs[0]
ans = ans.cuda()
if self.idim != 3:
perm = None
if perm is not None:
axisperm, axissgn, dmap, drev = build_tree.transforms[perm]
ans[:, :, :3] = ans[:, :, axisperm] * axissgn
else:
axisperm = axissgn = dmap = drev = None
for i, (line, layer) in enumerate(zip(inputs, self.layers)):
# print(f"forward #{i} ans = {ans.shape}")
vec = None
if layer.layer_type[0] != 'l':
vec = line.cuda()
sample = None
if layer.layer_type[0] == 's':
sample = self.layer_output[-self.sample_layers]
ans = layer(ans, line=line.cuda(), sample=sample, vec=vec, dmap=dmap, drev=drev)
if layer.layer_type[0] == 'l':
# Apply gather after layer, to increase efficiency
arrange = line.cuda().unsqueeze(-1).expand(line.shape + (ans.shape[-1], ))
ans = ans.gather(1, arrange)
self.layer_output.append(ans)
# assert ans.isnan().sum() == 0
try:
self.align_reg_loss = self.layers[0].pts_align.align_reg_loss
except:
self.align_reg_loss = torch.tensor(0., device='cuda')
return ans.squeeze(1)
class AlignWithEncoder(torch.nn.Module):
def __init__(self, k, encoder):
super().__init__()
self.k = k
self.encoder = encoder
self.feed = MLP([encoder.dim, encoder.dim // 2, encoder.dim // 4, k * k], last_bn=False)
self.dim = self.encoder.dim
self.upload = torch.nn.Identity()
if isinstance(self.encoder, EncoderKdtAlign):
self.encoder.align.upload = torch.nn.Linear(self.encoder.align.dim, self.dim)
def forward(self, pts, *args, **kwargs):
k = self.k
pts = pts.cuda()
x = self.encoder(pts, *args, **kwargs).reshape(-1, self.dim)
if isinstance(self.encoder, EncoderKdtAlign):
self.features = self.upload(x + self.encoder.align.features)
else:
self.features = self.upload(x)
x = self.feed(x)
x = x.reshape(-1, k, k) + torch.eye(k, device='cuda')
pts = torch.bmm(pts, x)
self.pts = pts
return pts
class EncoderKdtAlign(torch.nn.Module):
def __init__(self, *args, num_layers=1, **kwargs):
super().__init__()
assert num_layers >= 1
if True:
from copy import copy
args1 = list(copy(args))
args1[2] >>= 1 # dim /= 2
kwargs1 = copy(kwargs)
kwargs1['dim_layer0'] >>= 1 # dim_layer0 /= 2
if num_layers == 1:
align_encoder = Encoder(*args1, **kwargs1)
# align_encoder.layers[0].pts_align = torch.nn.Identity()
else:
align_encoder = EncoderKdtAlign(*args1, num_layers=num_layers-1, **kwargs1)
self.align = AlignWithEncoder(3, align_encoder)
self.encoder = Encoder(*args, **kwargs)
self.dim = self.encoder.dim
self.tree = self.encoder.tree
self.encoder.layers[0].pts_align = torch.nn.Identity()
self.align_dim = self.align.encoder.dim
def forward(self, pts, *args, **kwargs):
pts = self.align(pts, *args, **kwargs)
self.align_feature = self.align.features
return self.encoder(pts, *args, **kwargs)
class EncoderRec(torch.nn.Module):
def __init__(self, *args, num_layers=2, **kwargs):
super().__init__()
self.num_layers = num_layers
encoder = Encoder(*args, **kwargs)
self.first_align = encoder.layers[0].pts_align
self.encoder = encoder
self.align = AlignWithEncoder(3, encoder)
self.encoder.layers[0].pts_align = torch.nn.Identity()
self.tree = self.encoder.tree
self.dim = self.encoder.dim
def forward(self, pts, *args, **kwargs):
pts = pts.cuda()
pts = self.first_align(pts)
for _ in range(self.num_layers):
pts = self.align(pts, *args, **kwargs)
return self.encoder(pts, *args, **kwargs)