This repository has been archived by the owner on Apr 18, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfinite_differencing.jl
227 lines (193 loc) · 7.03 KB
/
finite_differencing.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
using FDM
export check_Dv, check_Dv_update, check_errs,
assert_approx_equal, domain1, domain2, points, in_domain
"""
approximate_Dv(
f,
ȳ::∇ArrayOrScalar,
x::Tuple{Vararg{∇ArrayOrScalar}},
v::Tuple{Vararg{∇ArrayOrScalar}}
)
approximate_Dv(f::Function, ȳ::∇ArrayOrScalar, x::∇ArrayOrScalar, v::∇ArrayOrScalar)
Estimate the directional derivative of `f` at `x` in direction `v`. If the function has
multiple arguments, `x` and `v` should be `Tuple`s of inputs and directions respectively.
"""
function approximate_Dv(
f,
ȳ::∇ArrayOrScalar,
x::Tuple{Vararg{∇ArrayOrScalar}},
v::Tuple{Vararg{∇ArrayOrScalar}}
)
return FDM.Central(5, 1)(ε -> sum(ȳ .* f((x .+ ε .* v)...)))
end
approximate_Dv(f, ȳ::∇ArrayOrScalar, x::∇ArrayOrScalar, v::∇ArrayOrScalar) =
approximate_Dv(f, ȳ, (x,), (v,))
"""
compute_Dv(
f,
ȳ::∇ArrayOrScalar,
x::Tuple{Vararg{∇ArrayOrScalar}},
v::Tuple{Vararg{∇ArrayOrScalar}}
)
Compute the directional derivative of `f` at `x` in direction `v` using AD. Use this
result to back-propagate the sensitivity ȳ. If ȳ, x and v are column vectors, then this is
equivalent to computing `ȳ'(J f)(x) v`, where `(J f)(x)` denotes the Jacobian of `f`
evaluated at `x`. Analogous operations happen for scalars and N-dimensional arrays.
"""
function compute_Dv(
f,
ȳ::∇ArrayOrScalar,
x::Tuple{Vararg{∇ArrayOrScalar}},
v::Tuple{Vararg{∇ArrayOrScalar}}
)
x_ = Leaf.(Tape(), x)
∇f = ∇(f(x_...), ȳ)
return sum(map((x, v)->sum(∇f[x] .* v), x_, v))
end
compute_Dv(f, ȳ::∇ArrayOrScalar, x::∇ArrayOrScalar, v::∇ArrayOrScalar) =
compute_Dv(f, ȳ, (x,), (v,))
function compute_Dv_update(
f,
ȳ::∇ArrayOrScalar,
x::Tuple{Vararg{∇ArrayOrScalar}},
v::Tuple{Vararg{∇ArrayOrScalar}}
)
x_ = Leaf.(Tape(), x)
y = f(x_...)
rtape = reverse_tape(y, ȳ)
# Randomly initialise `Leaf`s.
inits = Vector(undef, length(rtape))
for i = 1:length(rtape)
if isleaf(tape(y)[i])
inits[i] = randned_container(unbox(tape(y)[i]))
rtape[i] = copy(inits[i])
end
end
# Perform the reverse pass.
∇f = propagate(tape(y), rtape)
# Substract the random initialisations.
for i = 1:length(rtape)
isleaf(tape(y)[i]) && (∇f[i] -= inits[i])
end
return sum(map((x, v)->sum(∇f[x] .* v), x_, v))
end
compute_Dv_update(f, ȳ::∇ArrayOrScalar, x::∇ArrayOrScalar, v::∇ArrayOrScalar) =
compute_Dv_update(f, ȳ, (x,), (v,))
isleaf(::Leaf) = true
isleaf(::Any) = false
"""
check_errs(
f,
ȳ::∇ArrayOrScalar,
x::T,
v::T,
ε_abs::∇Scalar=1e-10,
ε_rel::∇Scalar=1e-7
)::Bool where T
Check that the difference between finite differencing directional derivative estimation and
RMAD directional derivative computation for function `f` at `x` in direction `v`, for both
allocating and in-place modes, has absolute and relative errors of `ε_abs` and `ε_rel`
respectively, when scaled by reverse-mode sensitivity `ȳ`.
"""
function check_errs(
f,
ȳ::∇ArrayOrScalar,
x::T,
v::T,
ε_abs::∇Scalar=1e-10,
ε_rel::∇Scalar=1e-7
)::Bool where T
∇x_alloc = compute_Dv(f, ȳ, x, v)
∇x_inplace = compute_Dv_update(f, ȳ, x, v)
∇x_fin_diff = approximate_Dv(f, ȳ, x, v)
assert_approx_equal(∇x_alloc, ∇x_fin_diff, ε_abs, ε_rel, "<$f> allocated")
assert_approx_equal(∇x_inplace, ∇x_fin_diff, ε_abs, ε_rel, "<$f> in-place")
return true
end
"""
in_domain(f::Function, x::Float64...)
Check whether an input `x` is in a scalar, real function `f`'s domain.
"""
function in_domain(f::Function, x::Float64...)
try
y = f(x...)
return isa(y, Real) && !isnan(y)
catch err
return isa(err, DomainError) ? false : throw(err)
end
end
# Test points that are used to determine functions's domains.
points = [-π + .1, -.5π + .1, -.9, -.1, .1, .9, .5π - .1, π - .1]
"""
domain1{T}(in_domain::Function, measure::Function, points::Vector{T})
domain1(f::Function)
Attempt to find a domain for a unary, scalar function `f`.
# Arguments
- `in_domain::Function`: Function that takes a single argument `x` and returns whether `x`
argument is in `f`'s domain.
- `measure::Function`: Function that measures the size of a set of points for `f`.
- `points::Vector{T}`: Ordered set of test points to construct the domain from.
"""
function domain1(in_domain::Function, measure::Function, points::Vector{T}) where T
# Find the connected sets of points that are in f's domain.
connected_sets, set = Vector{Vector{T}}(), Vector{T}()
for x in points
if in_domain(x)
push!(set, x)
else
if length(set) > 0
push!(connected_sets, set)
set = Vector{T}()
end
end
end
# Add the possibly yet unadded set.
length(set) > 0 && push!(connected_sets, set)
# Return nothing if no domain could be found.
length(connected_sets) == 0 && return
# Pick the largest domain.
return connected_sets[argmax(measure.(connected_sets))]
end
function domain1(f::Function)
set = domain1(x -> in_domain(f, x), x -> maximum(x) - minimum(x), points)
set === nothing && return
return (minimum(set), maximum(set))
end
"""
Slice2
Slice of a Float64 x Float64 domain.
"""
mutable struct Slice2
x::Float64
y_range::Union{Tuple{Float64, Float64}, Nothing}
end
"""
domain2(f::Function)
Attempt to find a rectangular domain for a binary, scalar function `f`.
"""
function domain2(f::Function)
# Construct slices for all x in points.
slices = Slice2.(points, [domain1(y -> f(x, y)) for x in points])
# Extract a set of in-domain slices.
measure = x -> maximum(getfield.(x, :x)) - minimum(getfield.(x, :x))
in_domain_slices = domain1(x -> x.y_range !== nothing, measure, slices)
in_domain_slices === nothing && return
# Extract the x range of the domain.
xs = getfield.(in_domain_slices, :x)
x_range = (minimum(xs), maximum(xs))
# Extract the y range of the domain.
y_ranges = getfield.(in_domain_slices, :y_range)
y_lower, y_upper = maximum(getindex.(y_ranges, 1)), minimum(getindex.(y_ranges, 2))
y_lower >= y_upper && return
y_range = (y_lower, y_upper)
return (x_range, y_range)
end
# `beta`s domain cannot be determined correctly, since `beta(-.2, -.2)` doesn't throw an
# error, strangely enough.
domain2(::typeof(beta)) = ((minimum(points[points .> 0]), maximum(points)),
(minimum(points[points .> 0]), maximum(points)))
# Both of these functions are technically defined on the entire real line, but the left
# half is troublesome due to the large number of points at which it isn't defined. As such
# we restrict unit testing to the right-half.
domain1(::typeof(gamma)) = (minimum(points[points .> 0]), maximum(points[points .> 0]))
domain1(::typeof(trigamma)) = (minimum(points[points .> 0]), maximum(points[points .> 0]))