-
Notifications
You must be signed in to change notification settings - Fork 434
/
humanoid.py
413 lines (328 loc) · 19.7 KB
/
humanoid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
# Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
import os
import torch
from isaacgym import gymtorch
from isaacgym import gymapi
from isaacgymenvs.utils.torch_jit_utils import scale, unscale, quat_mul, quat_conjugate, quat_from_angle_axis, \
to_torch, get_axis_params, torch_rand_float, tensor_clamp, compute_heading_and_up, compute_rot, normalize_angle
from isaacgymenvs.tasks.base.vec_task import VecTask
class Humanoid(VecTask):
def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render):
self.cfg = cfg
self.randomization_params = self.cfg["task"]["randomization_params"]
self.randomize = self.cfg["task"]["randomize"]
self.dof_vel_scale = self.cfg["env"]["dofVelocityScale"]
self.angular_velocity_scale = self.cfg["env"].get("angularVelocityScale", 0.1)
self.contact_force_scale = self.cfg["env"]["contactForceScale"]
self.power_scale = self.cfg["env"]["powerScale"]
self.heading_weight = self.cfg["env"]["headingWeight"]
self.up_weight = self.cfg["env"]["upWeight"]
self.actions_cost_scale = self.cfg["env"]["actionsCost"]
self.energy_cost_scale = self.cfg["env"]["energyCost"]
self.joints_at_limit_cost_scale = self.cfg["env"]["jointsAtLimitCost"]
self.death_cost = self.cfg["env"]["deathCost"]
self.termination_height = self.cfg["env"]["terminationHeight"]
self.debug_viz = self.cfg["env"]["enableDebugVis"]
self.plane_static_friction = self.cfg["env"]["plane"]["staticFriction"]
self.plane_dynamic_friction = self.cfg["env"]["plane"]["dynamicFriction"]
self.plane_restitution = self.cfg["env"]["plane"]["restitution"]
self.max_episode_length = self.cfg["env"]["episodeLength"]
self.cfg["env"]["numObservations"] = 108
self.cfg["env"]["numActions"] = 21
super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render)
if self.viewer != None:
cam_pos = gymapi.Vec3(50.0, 25.0, 2.4)
cam_target = gymapi.Vec3(45.0, 25.0, 0.0)
self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target)
# get gym GPU state tensors
actor_root_state = self.gym.acquire_actor_root_state_tensor(self.sim)
dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim)
sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim)
sensors_per_env = 2
self.vec_sensor_tensor = gymtorch.wrap_tensor(sensor_tensor).view(self.num_envs, sensors_per_env * 6)
dof_force_tensor = self.gym.acquire_dof_force_tensor(self.sim)
self.dof_force_tensor = gymtorch.wrap_tensor(dof_force_tensor).view(self.num_envs, self.num_dof)
self.gym.refresh_dof_state_tensor(self.sim)
self.gym.refresh_actor_root_state_tensor(self.sim)
self.root_states = gymtorch.wrap_tensor(actor_root_state)
self.initial_root_states = self.root_states.clone()
self.initial_root_states[:, 7:13] = 0
# create some wrapper tensors for different slices
self.dof_state = gymtorch.wrap_tensor(dof_state_tensor)
self.dof_pos = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 0]
self.dof_vel = self.dof_state.view(self.num_envs, self.num_dof, 2)[..., 1]
self.initial_dof_pos = torch.zeros_like(self.dof_pos, device=self.device, dtype=torch.float)
zero_tensor = torch.tensor([0.0], device=self.device)
self.initial_dof_pos = torch.where(self.dof_limits_lower > zero_tensor, self.dof_limits_lower,
torch.where(self.dof_limits_upper < zero_tensor, self.dof_limits_upper, self.initial_dof_pos))
self.initial_dof_vel = torch.zeros_like(self.dof_vel, device=self.device, dtype=torch.float)
# initialize some data used later on
self.up_vec = to_torch(get_axis_params(1., self.up_axis_idx), device=self.device).repeat((self.num_envs, 1))
self.heading_vec = to_torch([1, 0, 0], device=self.device).repeat((self.num_envs, 1))
self.inv_start_rot = quat_conjugate(self.start_rotation).repeat((self.num_envs, 1))
self.basis_vec0 = self.heading_vec.clone()
self.basis_vec1 = self.up_vec.clone()
self.targets = to_torch([1000, 0, 0], device=self.device).repeat((self.num_envs, 1))
self.target_dirs = to_torch([1, 0, 0], device=self.device).repeat((self.num_envs, 1))
self.dt = self.cfg["sim"]["dt"]
self.potentials = to_torch([-1000./self.dt], device=self.device).repeat(self.num_envs)
self.prev_potentials = self.potentials.clone()
def create_sim(self):
self.up_axis_idx = 2 # index of up axis: Y=1, Z=2
self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params)
self._create_ground_plane()
self._create_envs(self.num_envs, self.cfg["env"]['envSpacing'], int(np.sqrt(self.num_envs)))
# If randomizing, apply once immediately on startup before the fist sim step
if self.randomize:
self.apply_randomizations(self.randomization_params)
def _create_ground_plane(self):
plane_params = gymapi.PlaneParams()
plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0)
plane_params.static_friction = self.plane_static_friction
plane_params.dynamic_friction = self.plane_dynamic_friction
plane_params.restitution = self.plane_restitution
self.gym.add_ground(self.sim, plane_params)
def _create_envs(self, num_envs, spacing, num_per_row):
lower = gymapi.Vec3(-spacing, -spacing, 0.0)
upper = gymapi.Vec3(spacing, spacing, spacing)
asset_root = os.path.join(os.path.dirname(os.path.abspath(__file__)), '../../assets')
asset_file = "mjcf/nv_humanoid.xml"
if "asset" in self.cfg["env"]:
asset_file = self.cfg["env"]["asset"].get("assetFileName", asset_file)
asset_path = os.path.join(asset_root, asset_file)
asset_root = os.path.dirname(asset_path)
asset_file = os.path.basename(asset_path)
asset_options = gymapi.AssetOptions()
asset_options.angular_damping = 0.01
asset_options.max_angular_velocity = 100.0
# Note - DOF mode is set in the MJCF file and loaded by Isaac Gym
asset_options.default_dof_drive_mode = gymapi.DOF_MODE_NONE
humanoid_asset = self.gym.load_asset(self.sim, asset_root, asset_file, asset_options)
# Note - for this asset we are loading the actuator info from the MJCF
actuator_props = self.gym.get_asset_actuator_properties(humanoid_asset)
motor_efforts = [prop.motor_effort for prop in actuator_props]
# create force sensors at the feet
right_foot_idx = self.gym.find_asset_rigid_body_index(humanoid_asset, "right_foot")
left_foot_idx = self.gym.find_asset_rigid_body_index(humanoid_asset, "left_foot")
sensor_pose = gymapi.Transform()
self.gym.create_asset_force_sensor(humanoid_asset, right_foot_idx, sensor_pose)
self.gym.create_asset_force_sensor(humanoid_asset, left_foot_idx, sensor_pose)
self.max_motor_effort = max(motor_efforts)
self.motor_efforts = to_torch(motor_efforts, device=self.device)
self.torso_index = 0
self.num_bodies = self.gym.get_asset_rigid_body_count(humanoid_asset)
self.num_dof = self.gym.get_asset_dof_count(humanoid_asset)
self.num_joints = self.gym.get_asset_joint_count(humanoid_asset)
start_pose = gymapi.Transform()
start_pose.p = gymapi.Vec3(*get_axis_params(1.34, self.up_axis_idx))
start_pose.r = gymapi.Quat(0.0, 0.0, 0.0, 1.0)
self.start_rotation = torch.tensor([start_pose.r.x, start_pose.r.y, start_pose.r.z, start_pose.r.w], device=self.device)
self.humanoid_handles = []
self.envs = []
self.dof_limits_lower = []
self.dof_limits_upper = []
for i in range(self.num_envs):
# create env instance
env_ptr = self.gym.create_env(
self.sim, lower, upper, num_per_row
)
handle = self.gym.create_actor(env_ptr, humanoid_asset, start_pose, "humanoid", i, 0, 0)
self.gym.enable_actor_dof_force_sensors(env_ptr, handle)
for j in range(self.num_bodies):
self.gym.set_rigid_body_color(
env_ptr, handle, j, gymapi.MESH_VISUAL, gymapi.Vec3(0.97, 0.38, 0.06))
self.envs.append(env_ptr)
self.humanoid_handles.append(handle)
dof_prop = self.gym.get_actor_dof_properties(env_ptr, handle)
for j in range(self.num_dof):
if dof_prop['lower'][j] > dof_prop['upper'][j]:
self.dof_limits_lower.append(dof_prop['upper'][j])
self.dof_limits_upper.append(dof_prop['lower'][j])
else:
self.dof_limits_lower.append(dof_prop['lower'][j])
self.dof_limits_upper.append(dof_prop['upper'][j])
self.dof_limits_lower = to_torch(self.dof_limits_lower, device=self.device)
self.dof_limits_upper = to_torch(self.dof_limits_upper, device=self.device)
self.extremities = to_torch([5, 8], device=self.device, dtype=torch.long)
def compute_reward(self, actions):
self.rew_buf[:], self.reset_buf = compute_humanoid_reward(
self.obs_buf,
self.reset_buf,
self.progress_buf,
self.actions,
self.up_weight,
self.heading_weight,
self.potentials,
self.prev_potentials,
self.actions_cost_scale,
self.energy_cost_scale,
self.joints_at_limit_cost_scale,
self.max_motor_effort,
self.motor_efforts,
self.termination_height,
self.death_cost,
self.max_episode_length
)
def compute_observations(self):
self.gym.refresh_dof_state_tensor(self.sim)
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_force_sensor_tensor(self.sim)
self.gym.refresh_dof_force_tensor(self.sim)
self.obs_buf[:], self.potentials[:], self.prev_potentials[:], self.up_vec[:], self.heading_vec[:] = compute_humanoid_observations(
self.obs_buf, self.root_states, self.targets, self.potentials,
self.inv_start_rot, self.dof_pos, self.dof_vel, self.dof_force_tensor,
self.dof_limits_lower, self.dof_limits_upper, self.dof_vel_scale,
self.vec_sensor_tensor, self.actions, self.dt, self.contact_force_scale, self.angular_velocity_scale,
self.basis_vec0, self.basis_vec1)
def reset_idx(self, env_ids):
# Randomization can happen only at reset time, since it can reset actor positions on GPU
if self.randomize:
self.apply_randomizations(self.randomization_params)
positions = torch_rand_float(-0.2, 0.2, (len(env_ids), self.num_dof), device=self.device)
velocities = torch_rand_float(-0.1, 0.1, (len(env_ids), self.num_dof), device=self.device)
self.dof_pos[env_ids] = tensor_clamp(self.initial_dof_pos[env_ids] + positions, self.dof_limits_lower, self.dof_limits_upper)
self.dof_vel[env_ids] = velocities
env_ids_int32 = env_ids.to(dtype=torch.int32)
self.gym.set_actor_root_state_tensor_indexed(self.sim,
gymtorch.unwrap_tensor(self.initial_root_states),
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32))
self.gym.set_dof_state_tensor_indexed(self.sim,
gymtorch.unwrap_tensor(self.dof_state),
gymtorch.unwrap_tensor(env_ids_int32), len(env_ids_int32))
to_target = self.targets[env_ids] - self.initial_root_states[env_ids, 0:3]
to_target[:, self.up_axis_idx] = 0
self.prev_potentials[env_ids] = -torch.norm(to_target, p=2, dim=-1) / self.dt
self.potentials[env_ids] = self.prev_potentials[env_ids].clone()
self.progress_buf[env_ids] = 0
self.reset_buf[env_ids] = 0
def pre_physics_step(self, actions):
self.actions = actions.to(self.device).clone()
forces = self.actions * self.motor_efforts.unsqueeze(0) * self.power_scale
force_tensor = gymtorch.unwrap_tensor(forces)
self.gym.set_dof_actuation_force_tensor(self.sim, force_tensor)
def post_physics_step(self):
self.progress_buf += 1
self.randomize_buf += 1
env_ids = self.reset_buf.nonzero(as_tuple=False).flatten()
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.compute_observations()
self.compute_reward(self.actions)
# debug viz
if self.viewer and self.debug_viz:
self.gym.clear_lines(self.viewer)
points = []
colors = []
for i in range(self.num_envs):
origin = self.gym.get_env_origin(self.envs[i])
pose = self.root_states[:, 0:3][i].cpu().numpy()
glob_pos = gymapi.Vec3(origin.x + pose[0], origin.y + pose[1], origin.z + pose[2])
points.append([glob_pos.x, glob_pos.y, glob_pos.z, glob_pos.x + 4 * self.heading_vec[i, 0].cpu().numpy(),
glob_pos.y + 4 * self.heading_vec[i, 1].cpu().numpy(),
glob_pos.z + 4 * self.heading_vec[i, 2].cpu().numpy()])
colors.append([0.97, 0.1, 0.06])
points.append([glob_pos.x, glob_pos.y, glob_pos.z, glob_pos.x + 4 * self.up_vec[i, 0].cpu().numpy(), glob_pos.y + 4 * self.up_vec[i, 1].cpu().numpy(),
glob_pos.z + 4 * self.up_vec[i, 2].cpu().numpy()])
colors.append([0.05, 0.99, 0.04])
self.gym.add_lines(self.viewer, None, self.num_envs * 2, points, colors)
#####################################################################
###=========================jit functions=========================###
#####################################################################
@torch.jit.script
def compute_humanoid_reward(
obs_buf,
reset_buf,
progress_buf,
actions,
up_weight,
heading_weight,
potentials,
prev_potentials,
actions_cost_scale,
energy_cost_scale,
joints_at_limit_cost_scale,
max_motor_effort,
motor_efforts,
termination_height,
death_cost,
max_episode_length
):
# type: (Tensor, Tensor, Tensor, Tensor, float, float, Tensor, Tensor, float, float, float, float, Tensor, float, float, float) -> Tuple[Tensor, Tensor]
# reward from the direction headed
heading_weight_tensor = torch.ones_like(obs_buf[:, 11]) * heading_weight
heading_reward = torch.where(obs_buf[:, 11] > 0.8, heading_weight_tensor, heading_weight * obs_buf[:, 11] / 0.8)
# reward for being upright
up_reward = torch.zeros_like(heading_reward)
up_reward = torch.where(obs_buf[:, 10] > 0.93, up_reward + up_weight, up_reward)
actions_cost = torch.sum(actions ** 2, dim=-1)
# energy cost reward
motor_effort_ratio = motor_efforts / max_motor_effort
scaled_cost = joints_at_limit_cost_scale * (torch.abs(obs_buf[:, 12:33]) - 0.98) / 0.02
dof_at_limit_cost = torch.sum((torch.abs(obs_buf[:, 12:33]) > 0.98) * scaled_cost * motor_effort_ratio.unsqueeze(0), dim=-1)
electricity_cost = torch.sum(torch.abs(actions * obs_buf[:, 33:54]) * motor_effort_ratio.unsqueeze(0), dim=-1)
# reward for duration of being alive
alive_reward = torch.ones_like(potentials) * 2.0
progress_reward = potentials - prev_potentials
total_reward = progress_reward + alive_reward + up_reward + heading_reward - \
actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost
# adjust reward for fallen agents
total_reward = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(total_reward) * death_cost, total_reward)
# reset agents
reset = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(reset_buf), reset_buf)
reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset)
return total_reward, reset
@torch.jit.script
def compute_humanoid_observations(obs_buf, root_states, targets, potentials, inv_start_rot, dof_pos, dof_vel,
dof_force, dof_limits_lower, dof_limits_upper, dof_vel_scale,
sensor_force_torques, actions, dt, contact_force_scale, angular_velocity_scale,
basis_vec0, basis_vec1):
# type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float, Tensor, Tensor, float, float, float, Tensor, Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]
torso_position = root_states[:, 0:3]
torso_rotation = root_states[:, 3:7]
velocity = root_states[:, 7:10]
ang_velocity = root_states[:, 10:13]
to_target = targets - torso_position
to_target[:, 2] = 0
prev_potentials_new = potentials.clone()
potentials = -torch.norm(to_target, p=2, dim=-1) / dt
torso_quat, up_proj, heading_proj, up_vec, heading_vec = compute_heading_and_up(
torso_rotation, inv_start_rot, to_target, basis_vec0, basis_vec1, 2)
vel_loc, angvel_loc, roll, pitch, yaw, angle_to_target = compute_rot(
torso_quat, velocity, ang_velocity, targets, torso_position)
roll = normalize_angle(roll).unsqueeze(-1)
yaw = normalize_angle(yaw).unsqueeze(-1)
angle_to_target = normalize_angle(angle_to_target).unsqueeze(-1)
dof_pos_scaled = unscale(dof_pos, dof_limits_lower, dof_limits_upper)
# obs_buf shapes: 1, 3, 3, 1, 1, 1, 1, 1, num_dofs (21), num_dofs (21), 6, num_acts (21)
obs = torch.cat((torso_position[:, 2].view(-1, 1), vel_loc, angvel_loc * angular_velocity_scale,
yaw, roll, angle_to_target, up_proj.unsqueeze(-1), heading_proj.unsqueeze(-1),
dof_pos_scaled, dof_vel * dof_vel_scale, dof_force * contact_force_scale,
sensor_force_torques.view(-1, 12) * contact_force_scale, actions), dim=-1)
return obs, potentials, prev_potentials_new, up_vec, heading_vec