-
Notifications
You must be signed in to change notification settings - Fork 434
/
trifinger.py
1512 lines (1330 loc) · 68.9 KB
/
trifinger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2018-2023, NVIDIA Corporation
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
import os
import torch
from isaacgym import gymtorch
from isaacgym import gymapi
from isaacgymenvs.utils.torch_jit_utils import quat_mul
from collections import OrderedDict
project_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
from isaacgymenvs.utils.torch_jit_utils import *
from isaacgymenvs.tasks.base.vec_task import VecTask
from types import SimpleNamespace
from collections import deque
from typing import Deque, Dict, Tuple, Union
# python
import enum
import numpy as np
# ################### #
# Dimensions of robot #
# ################### #
class TrifingerDimensions(enum.Enum):
"""
Dimensions of the tri-finger robot.
Note: While it may not seem necessary for tri-finger robot since it is fixed base, for floating
base systems having this dimensions class is useful.
"""
# general state
# cartesian position + quaternion orientation
PoseDim = 7,
# linear velocity + angular velcoity
VelocityDim = 6
# state: pose + velocity
StateDim = 13
# force + torque
WrenchDim = 6
# for robot
# number of fingers
NumFingers = 3
# for three fingers
JointPositionDim = 9
JointVelocityDim = 9
JointTorqueDim = 9
# generalized coordinates
GeneralizedCoordinatesDim = JointPositionDim
GeneralizedVelocityDim = JointVelocityDim
# for objects
ObjectPoseDim = 7
ObjectVelocityDim = 6
# ################# #
# Different objects #
# ################# #
# radius of the area
ARENA_RADIUS = 0.195
class CuboidalObject:
"""
Fields for a cuboidal object.
@note Motivation for this class is that if domain randomization is performed over the
size of the cuboid, then its attributes are automatically updated as well.
"""
# 3D radius of the cuboid
radius_3d: float
# distance from wall to the center
max_com_distance_to_center: float
# minimum and mximum height for spawning the object
min_height: float
max_height = 0.1
NumKeypoints = 8
ObjectPositionDim = 3
KeypointsCoordsDim = NumKeypoints * ObjectPositionDim
def __init__(self, size: Union[float, Tuple[float, float, float]]):
"""Initialize the cuboidal object.
Args:
size: The size of the object along x, y, z in meters. If a single float is provided, then it is assumed that
object is a cube.
"""
# decide the size depedning on input type
if isinstance(size, float):
self._size = (size, size, size)
else:
self._size = size
# compute remaining attributes
self.__compute()
"""
Properties
"""
@property
def size(self) -> Tuple[float, float, float]:
"""
Returns the dimensions of the cuboid object (x, y, z) in meters.
"""
return self._size
"""
Configurations
"""
@size.setter
def size(self, size: Union[float, Tuple[float, float, float]]):
""" Set size of the object.
Args:
size: The size of the object along x, y, z in meters. If a single float is provided, then it is assumed
that object is a cube.
"""
# decide the size depedning on input type
if isinstance(size, float):
self._size = (size, size, size)
else:
self._size = size
# compute attributes
self.__compute()
"""
Private members
"""
def __compute(self):
"""Compute the attributes for the object.
"""
# compute 3D radius of the cuboid
max_len = max(self._size)
self.radius_3d = max_len * np.sqrt(3) / 2
# compute distance from wall to the center
self.max_com_distance_to_center = ARENA_RADIUS - self.radius_3d
# minimum height for spawning the object
self.min_height = self._size[2] / 2
class Trifinger(VecTask):
# constants
# directory where assets for the simulator are present
_trifinger_assets_dir = os.path.join(project_dir, "../", "assets", "trifinger")
# robot urdf (path relative to `_trifinger_assets_dir`)
_robot_urdf_file = "robot_properties_fingers/urdf/pro/trifingerpro.urdf"
# stage urdf (path relative to `_trifinger_assets_dir`)
# _stage_urdf_file = "robot_properties_fingers/urdf/trifinger_stage.urdf"
_table_urdf_file = "robot_properties_fingers/urdf/table_without_border.urdf"
_boundary_urdf_file = "robot_properties_fingers/urdf/high_table_boundary.urdf"
# object urdf (path relative to `_trifinger_assets_dir`)
# TODO: Make object URDF configurable.
_object_urdf_file = "objects/urdf/cube_multicolor_rrc.urdf"
# physical dimensions of the object
# TODO: Make object dimensions configurable.
_object_dims = CuboidalObject(0.065)
# dimensions of the system
_dims = TrifingerDimensions
# Constants for limits
# Ref: https://github.com/rr-learning/rrc_simulation/blob/master/python/rrc_simulation/trifinger_platform.py#L68
# maximum joint torque (in N-m) applicable on each actuator
_max_torque_Nm = 0.36
# maximum joint velocity (in rad/s) on each actuator
_max_velocity_radps = 10
# History of state: Number of timesteps to save history for
# Note: Currently used only to manage history of object and frame states.
# This can be extended to other observations (as done in ANYmal).
_state_history_len = 2
# buffers to store the simulation data
# goal poses for the object [num. of instances, 7] where 7: (x, y, z, quat)
_object_goal_poses_buf: torch.Tensor
# DOF state of the system [num. of instances, num. of dof, 2] where last index: pos, vel
_dof_state: torch.Tensor
# Rigid body state of the system [num. of instances, num. of bodies, 13] where 13: (x, y, z, quat, v, omega)
_rigid_body_state: torch.Tensor
# Root prim states [num. of actors, 13] where 13: (x, y, z, quat, v, omega)
_actors_root_state: torch.Tensor
# Force-torque sensor array [num. of instances, num. of bodies * wrench]
_ft_sensors_values: torch.Tensor
# DOF position of the system [num. of instances, num. of dof]
_dof_position: torch.Tensor
# DOF velocity of the system [num. of instances, num. of dof]
_dof_velocity: torch.Tensor
# DOF torque of the system [num. of instances, num. of dof]
_dof_torque: torch.Tensor
# Fingertip links state list([num. of instances, num. of fingers, 13]) where 13: (x, y, z, quat, v, omega)
# The length of list is the history of the state: 0: t, 1: t-1, 2: t-2, ... step.
_fingertips_frames_state_history: Deque[torch.Tensor] = deque(maxlen=_state_history_len)
# Object prim state [num. of instances, 13] where 13: (x, y, z, quat, v, omega)
# The length of list is the history of the state: 0: t, 1: t-1, 2: t-2, ... step.
_object_state_history: Deque[torch.Tensor] = deque(maxlen=_state_history_len)
# stores the last action output
_last_action: torch.Tensor
# keeps track of the number of goal resets
_successes: torch.Tensor
# keeps track of number of consecutive successes
_consecutive_successes: float
_robot_limits: dict = {
"joint_position": SimpleNamespace(
# matches those on the real robot
low=np.array([-0.33, 0.0, -2.7] * _dims.NumFingers.value, dtype=np.float32),
high=np.array([1.0, 1.57, 0.0] * _dims.NumFingers.value, dtype=np.float32),
default=np.array([0.0, 0.9, -2.0] * _dims.NumFingers.value, dtype=np.float32),
),
"joint_velocity": SimpleNamespace(
low=np.full(_dims.JointVelocityDim.value, -_max_velocity_radps, dtype=np.float32),
high=np.full(_dims.JointVelocityDim.value, _max_velocity_radps, dtype=np.float32),
default=np.zeros(_dims.JointVelocityDim.value, dtype=np.float32),
),
"joint_torque": SimpleNamespace(
low=np.full(_dims.JointTorqueDim.value, -_max_torque_Nm, dtype=np.float32),
high=np.full(_dims.JointTorqueDim.value, _max_torque_Nm, dtype=np.float32),
default=np.zeros(_dims.JointTorqueDim.value, dtype=np.float32),
),
"fingertip_position": SimpleNamespace(
low=np.array([-0.4, -0.4, 0], dtype=np.float32),
high=np.array([0.4, 0.4, 0.5], dtype=np.float32),
),
"fingertip_orientation": SimpleNamespace(
low=-np.ones(4, dtype=np.float32),
high=np.ones(4, dtype=np.float32),
),
"fingertip_velocity": SimpleNamespace(
low=np.full(_dims.VelocityDim.value, -0.2, dtype=np.float32),
high=np.full(_dims.VelocityDim.value, 0.2, dtype=np.float32),
),
"fingertip_wrench": SimpleNamespace(
low=np.full(_dims.WrenchDim.value, -1.0, dtype=np.float32),
high=np.full(_dims.WrenchDim.value, 1.0, dtype=np.float32),
),
# used if we want to have joint stiffness/damping as parameters`
"joint_stiffness": SimpleNamespace(
low=np.array([1.0, 1.0, 1.0] * _dims.NumFingers.value, dtype=np.float32),
high=np.array([50.0, 50.0, 50.0] * _dims.NumFingers.value, dtype=np.float32),
),
"joint_damping": SimpleNamespace(
low=np.array([0.01, 0.03, 0.0001] * _dims.NumFingers.value, dtype=np.float32),
high=np.array([1.0, 3.0, 0.01] * _dims.NumFingers.value, dtype=np.float32),
),
}
# limits of the object (mapped later: str -> torch.tensor)
_object_limits: dict = {
"position": SimpleNamespace(
low=np.array([-0.3, -0.3, 0], dtype=np.float32),
high=np.array([0.3, 0.3, 0.3], dtype=np.float32),
default=np.array([0, 0, _object_dims.min_height], dtype=np.float32)
),
# difference between two positions
"position_delta": SimpleNamespace(
low=np.array([-0.6, -0.6, 0], dtype=np.float32),
high=np.array([0.6, 0.6, 0.3], dtype=np.float32),
default=np.array([0, 0, 0], dtype=np.float32)
),
"orientation": SimpleNamespace(
low=-np.ones(4, dtype=np.float32),
high=np.ones(4, dtype=np.float32),
default=np.array([0.0, 0.0, 0.0, 1.0], dtype=np.float32),
),
"velocity": SimpleNamespace(
low=np.full(_dims.VelocityDim.value, -0.5, dtype=np.float32),
high=np.full(_dims.VelocityDim.value, 0.5, dtype=np.float32),
default=np.zeros(_dims.VelocityDim.value, dtype=np.float32)
),
"scale": SimpleNamespace(
low=np.full(1, 0.0, dtype=np.float32),
high=np.full(1, 1.0, dtype=np.float32),
),
}
# PD gains for the robot (mapped later: str -> torch.tensor)
# Ref: https://github.com/rr-learning/rrc_simulation/blob/master/python/rrc_simulation/sim_finger.py#L49-L65
_robot_dof_gains = {
# The kp and kd gains of the PD control of the fingers.
# Note: This depends on simulation step size and is set for a rate of 250 Hz.
"stiffness": [10.0, 10.0, 10.0] * _dims.NumFingers.value,
"damping": [0.1, 0.3, 0.001] * _dims.NumFingers.value,
# The kd gains used for damping the joint motor velocities during the
# safety torque check on the joint motors.
"safety_damping": [0.08, 0.08, 0.04] * _dims.NumFingers.value
}
action_dim = _dims.JointTorqueDim.value
def __init__(self, cfg, rl_device, sim_device, graphics_device_id, headless, virtual_screen_capture, force_render):
self.cfg = cfg
self.obs_spec = {
"robot_q": self._dims.GeneralizedCoordinatesDim.value,
"robot_u": self._dims.GeneralizedVelocityDim.value,
"object_q": self._dims.ObjectPoseDim.value,
"object_q_des": self._dims.ObjectPoseDim.value,
"command": self.action_dim
}
if self.cfg["env"]["asymmetric_obs"]:
self.state_spec = {
# observations spec
**self.obs_spec,
# extra observations (added separately to make computations simpler)
"object_u": self._dims.ObjectVelocityDim.value,
"fingertip_state": self._dims.NumFingers.value * self._dims.StateDim.value,
"robot_a": self._dims.GeneralizedVelocityDim.value,
"fingertip_wrench": self._dims.NumFingers.value * self._dims.WrenchDim.value,
}
else:
self.state_spec = self.obs_spec
self.action_spec = {
"command": self.action_dim
}
self.cfg["env"]["numObservations"] = sum(self.obs_spec.values())
self.cfg["env"]["numStates"] = sum(self.state_spec.values())
self.cfg["env"]["numActions"] = sum(self.action_spec.values())
self.max_episode_length = self.cfg["env"]["episodeLength"]
self.randomize = self.cfg["task"]["randomize"]
self.randomization_params = self.cfg["task"]["randomization_params"]
# define prims present in the scene
prim_names = ["robot", "table", "boundary", "object", "goal_object"]
# mapping from name to asset instance
self.gym_assets = dict.fromkeys(prim_names)
# mapping from name to gym indices
self.gym_indices = dict.fromkeys(prim_names)
# mapping from name to gym rigid body handles
# name of finger tips links i.e. end-effector frames
fingertips_frames = ["finger_tip_link_0", "finger_tip_link_120", "finger_tip_link_240"]
self._fingertips_handles = OrderedDict.fromkeys(fingertips_frames, None)
# mapping from name to gym dof index
robot_dof_names = list()
for finger_pos in ['0', '120', '240']:
robot_dof_names += [f'finger_base_to_upper_joint_{finger_pos}',
f'finger_upper_to_middle_joint_{finger_pos}',
f'finger_middle_to_lower_joint_{finger_pos}']
self._robot_dof_indices = OrderedDict.fromkeys(robot_dof_names, None)
super().__init__(config=self.cfg, rl_device=rl_device, sim_device=sim_device, graphics_device_id=graphics_device_id, headless=headless, virtual_screen_capture=virtual_screen_capture, force_render=force_render)
if self.viewer != None:
cam_pos = gymapi.Vec3(0.7, 0.0, 0.7)
cam_target = gymapi.Vec3(0.0, 0.0, 0.0)
self.gym.viewer_camera_look_at(self.viewer, None, cam_pos, cam_target)
# change constant buffers from numpy/lists into torch tensors
# limits for robot
for limit_name in self._robot_limits:
# extract limit simple-namespace
limit_dict = self._robot_limits[limit_name].__dict__
# iterate over namespace attributes
for prop, value in limit_dict.items():
limit_dict[prop] = torch.tensor(value, dtype=torch.float, device=self.device)
# limits for the object
for limit_name in self._object_limits:
# extract limit simple-namespace
limit_dict = self._object_limits[limit_name].__dict__
# iterate over namespace attributes
for prop, value in limit_dict.items():
limit_dict[prop] = torch.tensor(value, dtype=torch.float, device=self.device)
# PD gains for actuation
for gain_name, value in self._robot_dof_gains.items():
self._robot_dof_gains[gain_name] = torch.tensor(value, dtype=torch.float, device=self.device)
# store the sampled goal poses for the object: [num. of instances, 7]
self._object_goal_poses_buf = torch.zeros((self.num_envs, 7), device=self.device, dtype=torch.float)
# get force torque sensor if enabled
if self.cfg["env"]["enable_ft_sensors"] or self.cfg["env"]["asymmetric_obs"]:
# # joint torques
# dof_force_tensor = self.gym.acquire_dof_force_tensor(self.sim)
# self._dof_torque = gymtorch.wrap_tensor(dof_force_tensor).view(self.num_envs,
# self._dims.JointTorqueDim.value)
# # force-torque sensor
num_ft_dims = self._dims.NumFingers.value * self._dims.WrenchDim.value
# sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim)
# self._ft_sensors_values = gymtorch.wrap_tensor(sensor_tensor).view(self.num_envs, num_ft_dims)
sensor_tensor = self.gym.acquire_force_sensor_tensor(self.sim)
self._ft_sensors_values = gymtorch.wrap_tensor(sensor_tensor).view(self.num_envs, num_ft_dims)
dof_force_tensor = self.gym.acquire_dof_force_tensor(self.sim)
self._dof_torque = gymtorch.wrap_tensor(dof_force_tensor).view(self.num_envs, self._dims.JointTorqueDim.value)
# get gym GPU state tensors
actor_root_state_tensor = self.gym.acquire_actor_root_state_tensor(self.sim)
dof_state_tensor = self.gym.acquire_dof_state_tensor(self.sim)
rigid_body_tensor = self.gym.acquire_rigid_body_state_tensor(self.sim)
# refresh the buffer (to copy memory?)
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_dof_state_tensor(self.sim)
self.gym.refresh_rigid_body_state_tensor(self.sim)
# create wrapper tensors for reference (consider everything as pointer to actual memory)
# DOF
self._dof_state = gymtorch.wrap_tensor(dof_state_tensor).view(self.num_envs, -1, 2)
self._dof_position = self._dof_state[..., 0]
self._dof_velocity = self._dof_state[..., 1]
# rigid body
self._rigid_body_state = gymtorch.wrap_tensor(rigid_body_tensor).view(self.num_envs, -1, 13)
# root actors
self._actors_root_state = gymtorch.wrap_tensor(actor_root_state_tensor).view(-1, 13)
# frames history
action_dim = sum(self.action_spec.values())
self._last_action = torch.zeros(self.num_envs, action_dim, dtype=torch.float, device=self.device)
fingertip_handles_indices = list(self._fingertips_handles.values())
object_indices = self.gym_indices["object"]
# timestep 0 is current tensor
curr_history_length = 0
while curr_history_length < self._state_history_len:
# add tensors to history list
print(self._rigid_body_state.shape)
self._fingertips_frames_state_history.append(self._rigid_body_state[:, fingertip_handles_indices])
self._object_state_history.append(self._actors_root_state[object_indices])
# update current history length
curr_history_length += 1
self._observations_scale = SimpleNamespace(low=None, high=None)
self._states_scale = SimpleNamespace(low=None, high=None)
self._action_scale = SimpleNamespace(low=None, high=None)
self._successes = torch.zeros(self.num_envs, device=self.device, dtype=torch.long)
self._successes_pos = torch.zeros(self.num_envs, device=self.device, dtype=torch.long)
self._successes_quat = torch.zeros(self.num_envs, device=self.device, dtype=torch.long)
self.__configure_mdp_spaces()
def create_sim(self):
self.up_axis_idx = 2 # index of up axis: Y=1, Z=2
self.sim = super().create_sim(self.device_id, self.graphics_device_id, self.physics_engine, self.sim_params)
self._create_ground_plane()
self._create_scene_assets()
self._create_envs(self.num_envs, self.cfg["env"]["envSpacing"], int(np.sqrt(self.num_envs)))
# If randomizing, apply once immediately on startup before the fist sim step
if self.randomize:
self.apply_randomizations(self.randomization_params)
def _create_ground_plane(self):
plane_params = gymapi.PlaneParams()
plane_params.normal = gymapi.Vec3(0.0, 0.0, 1.0)
plane_params.distance = 0.013
plane_params.static_friction = 1.0
plane_params.dynamic_friction = 1.0
self.gym.add_ground(self.sim, plane_params)
def _create_scene_assets(self):
""" Define Gym assets for stage, robot and object.
"""
# define assets
self.gym_assets["robot"] = self.__define_robot_asset()
self.gym_assets["table"] = self.__define_table_asset()
self.gym_assets["boundary"] = self.__define_boundary_asset()
self.gym_assets["object"] = self.__define_object_asset()
self.gym_assets["goal_object"] = self.__define_goal_object_asset()
# display the properties (only for debugging)
# robot
print("Trifinger Robot Asset: ")
print(f'\t Number of bodies: {self.gym.get_asset_rigid_body_count(self.gym_assets["robot"])}')
print(f'\t Number of shapes: {self.gym.get_asset_rigid_shape_count(self.gym_assets["robot"])}')
print(f'\t Number of dofs: {self.gym.get_asset_dof_count(self.gym_assets["robot"])}')
print(f'\t Number of actuated dofs: {self._dims.JointTorqueDim.value}')
# stage
print("Trifinger Table Asset: ")
print(f'\t Number of bodies: {self.gym.get_asset_rigid_body_count(self.gym_assets["table"])}')
print(f'\t Number of shapes: {self.gym.get_asset_rigid_shape_count(self.gym_assets["table"])}')
print("Trifinger Boundary Asset: ")
print(f'\t Number of bodies: {self.gym.get_asset_rigid_body_count(self.gym_assets["boundary"])}')
print(f'\t Number of shapes: {self.gym.get_asset_rigid_shape_count(self.gym_assets["boundary"])}')
def _create_envs(self, num_envs, spacing, num_per_row):
# define the dof properties for the robot
robot_dof_props = self.gym.get_asset_dof_properties(self.gym_assets["robot"])
# set dof properites based on the control mode
for k, dof_index in enumerate(self._robot_dof_indices.values()):
# note: since safety checks are employed, the simulator PD controller is not
# used. Instead the torque is computed manually and applied, even if the
# command mode is 'position'.
robot_dof_props['driveMode'][dof_index] = gymapi.DOF_MODE_EFFORT
robot_dof_props['stiffness'][dof_index] = 0.0
robot_dof_props['damping'][dof_index] = 0.0
# set dof limits
robot_dof_props['effort'][dof_index] = self._max_torque_Nm
robot_dof_props['velocity'][dof_index] = self._max_velocity_radps
robot_dof_props['lower'][dof_index] = float(self._robot_limits["joint_position"].low[k])
robot_dof_props['upper'][dof_index] = float(self._robot_limits["joint_position"].high[k])
self.envs = []
# define lower and upper region bound for each environment
env_lower_bound = gymapi.Vec3(-self.cfg["env"]["envSpacing"], -self.cfg["env"]["envSpacing"], 0.0)
env_upper_bound = gymapi.Vec3(self.cfg["env"]["envSpacing"], self.cfg["env"]["envSpacing"], self.cfg["env"]["envSpacing"])
num_envs_per_row = int(np.sqrt(self.num_envs))
# initialize gym indices buffer as a list
# note: later the list is converted to torch tensor for ease in interfacing with IsaacGym.
for asset_name in self.gym_indices.keys():
self.gym_indices[asset_name] = list()
# count number of shapes and bodies
max_agg_bodies = 0
max_agg_shapes = 0
for asset in self.gym_assets.values():
max_agg_bodies += self.gym.get_asset_rigid_body_count(asset)
max_agg_shapes += self.gym.get_asset_rigid_shape_count(asset)
# iterate and create environment instances
for env_index in range(self.num_envs):
# create environment
env_ptr = self.gym.create_env(self.sim, env_lower_bound, env_upper_bound, num_envs_per_row)
# begin aggregration mode if enabled - this can improve simulation performance
if self.cfg["env"]["aggregate_mode"]:
self.gym.begin_aggregate(env_ptr, max_agg_bodies, max_agg_shapes, True)
# add trifinger robot to environment
trifinger_actor = self.gym.create_actor(env_ptr, self.gym_assets["robot"], gymapi.Transform(),
"robot", env_index, 0, 0)
trifinger_idx = self.gym.get_actor_index(env_ptr, trifinger_actor, gymapi.DOMAIN_SIM)
# add table to environment
table_handle = self.gym.create_actor(env_ptr, self.gym_assets["table"], gymapi.Transform(),
"table", env_index, 1, 0)
table_idx = self.gym.get_actor_index(env_ptr, table_handle, gymapi.DOMAIN_SIM)
# add stage to environment
boundary_handle = self.gym.create_actor(env_ptr, self.gym_assets["boundary"], gymapi.Transform(),
"boundary", env_index, 1, 0)
boundary_idx = self.gym.get_actor_index(env_ptr, boundary_handle, gymapi.DOMAIN_SIM)
# add object to environment
object_handle = self.gym.create_actor(env_ptr, self.gym_assets["object"], gymapi.Transform(),
"object", env_index, 0, 0)
object_idx = self.gym.get_actor_index(env_ptr, object_handle, gymapi.DOMAIN_SIM)
# add goal object to environment
goal_handle = self.gym.create_actor(env_ptr, self.gym_assets["goal_object"], gymapi.Transform(),
"goal_object", env_index + self.num_envs, 0, 0)
goal_object_idx = self.gym.get_actor_index(env_ptr, goal_handle, gymapi.DOMAIN_SIM)
# change settings of DOF
self.gym.set_actor_dof_properties(env_ptr, trifinger_actor, robot_dof_props)
# add color to instances
stage_color = gymapi.Vec3(0.73, 0.68, 0.72)
self.gym.set_rigid_body_color(env_ptr, table_handle, 0, gymapi.MESH_VISUAL_AND_COLLISION, stage_color)
self.gym.set_rigid_body_color(env_ptr, boundary_handle, 0, gymapi.MESH_VISUAL_AND_COLLISION, stage_color)
# end aggregation mode if enabled
if self.cfg["env"]["aggregate_mode"]:
self.gym.end_aggregate(env_ptr)
# add instances to list
self.envs.append(env_ptr)
self.gym_indices["robot"].append(trifinger_idx)
self.gym_indices["table"].append(table_idx)
self.gym_indices["boundary"].append(boundary_idx)
self.gym_indices["object"].append(object_idx)
self.gym_indices["goal_object"].append(goal_object_idx)
# convert gym indices from list to tensor
for asset_name, asset_indices in self.gym_indices.items():
self.gym_indices[asset_name] = torch.tensor(asset_indices, dtype=torch.long, device=self.device)
def __configure_mdp_spaces(self):
"""
Configures the observations, state and action spaces.
"""
# Action scale for the MDP
# Note: This is order sensitive.
if self.cfg["env"]["command_mode"] == "position":
# action space is joint positions
self._action_scale.low = self._robot_limits["joint_position"].low
self._action_scale.high = self._robot_limits["joint_position"].high
elif self.cfg["env"]["command_mode"] == "torque":
# action space is joint torques
self._action_scale.low = self._robot_limits["joint_torque"].low
self._action_scale.high = self._robot_limits["joint_torque"].high
else:
msg = f"Invalid command mode. Input: {self.cfg['env']['command_mode']} not in ['torque', 'position']."
raise ValueError(msg)
# Observations scale for the MDP
# check if policy outputs normalized action [-1, 1] or not.
if self.cfg["env"]["normalize_action"]:
obs_action_scale = SimpleNamespace(
low=torch.full((self.action_dim,), -1, dtype=torch.float, device=self.device),
high=torch.full((self.action_dim,), 1, dtype=torch.float, device=self.device)
)
else:
obs_action_scale = self._action_scale
object_obs_low = torch.cat([
self._object_limits["position"].low,
self._object_limits["orientation"].low,
]*2)
object_obs_high = torch.cat([
self._object_limits["position"].high,
self._object_limits["orientation"].high,
]*2)
# Note: This is order sensitive.
self._observations_scale.low = torch.cat([
self._robot_limits["joint_position"].low,
self._robot_limits["joint_velocity"].low,
object_obs_low,
obs_action_scale.low
])
self._observations_scale.high = torch.cat([
self._robot_limits["joint_position"].high,
self._robot_limits["joint_velocity"].high,
object_obs_high,
obs_action_scale.high
])
# State scale for the MDP
if self.cfg["env"]["asymmetric_obs"]:
# finger tip scaling
fingertip_state_scale = SimpleNamespace(
low=torch.cat([
self._robot_limits["fingertip_position"].low,
self._robot_limits["fingertip_orientation"].low,
self._robot_limits["fingertip_velocity"].low,
]),
high=torch.cat([
self._robot_limits["fingertip_position"].high,
self._robot_limits["fingertip_orientation"].high,
self._robot_limits["fingertip_velocity"].high,
])
)
states_low = [
self._observations_scale.low,
self._object_limits["velocity"].low,
fingertip_state_scale.low.repeat(self._dims.NumFingers.value),
self._robot_limits["joint_torque"].low,
self._robot_limits["fingertip_wrench"].low.repeat(self._dims.NumFingers.value),
]
states_high = [
self._observations_scale.high,
self._object_limits["velocity"].high,
fingertip_state_scale.high.repeat(self._dims.NumFingers.value),
self._robot_limits["joint_torque"].high,
self._robot_limits["fingertip_wrench"].high.repeat(self._dims.NumFingers.value),
]
# Note: This is order sensitive.
self._states_scale.low = torch.cat(states_low)
self._states_scale.high = torch.cat(states_high)
# check that dimensions of scalings are correct
# count number of dimensions
state_dim = sum(self.state_spec.values())
obs_dim = sum(self.obs_spec.values())
action_dim = sum(self.action_spec.values())
# check that dimensions match
# observations
if self._observations_scale.low.shape[0] != obs_dim or self._observations_scale.high.shape[0] != obs_dim:
msg = f"Observation scaling dimensions mismatch. " \
f"\tLow: {self._observations_scale.low.shape[0]}, " \
f"\tHigh: {self._observations_scale.high.shape[0]}, " \
f"\tExpected: {obs_dim}."
raise AssertionError(msg)
# state
if self.cfg["env"]["asymmetric_obs"] \
and (self._states_scale.low.shape[0] != state_dim or self._states_scale.high.shape[0] != state_dim):
msg = f"States scaling dimensions mismatch. " \
f"\tLow: {self._states_scale.low.shape[0]}, " \
f"\tHigh: {self._states_scale.high.shape[0]}, " \
f"\tExpected: {state_dim}."
raise AssertionError(msg)
# actions
if self._action_scale.low.shape[0] != action_dim or self._action_scale.high.shape[0] != action_dim:
msg = f"Actions scaling dimensions mismatch. " \
f"\tLow: {self._action_scale.low.shape[0]}, " \
f"\tHigh: {self._action_scale.high.shape[0]}, " \
f"\tExpected: {action_dim}."
raise AssertionError(msg)
# print the scaling
print(f'MDP Raw observation bounds\n'
f'\tLow: {self._observations_scale.low}\n'
f'\tHigh: {self._observations_scale.high}')
print(f'MDP Raw state bounds\n'
f'\tLow: {self._states_scale.low}\n'
f'\tHigh: {self._states_scale.high}')
print(f'MDP Raw action bounds\n'
f'\tLow: {self._action_scale.low}\n'
f'\tHigh: {self._action_scale.high}')
def compute_reward(self, actions):
self.rew_buf[:] = 0.
self.reset_buf[:] = 0.
self.rew_buf[:], self.reset_buf[:], log_dict = compute_trifinger_reward(
self.obs_buf,
self.reset_buf,
self.progress_buf,
self.max_episode_length,
self.cfg["sim"]["dt"],
self.cfg["env"]["reward_terms"]["finger_move_penalty"]["weight"],
self.cfg["env"]["reward_terms"]["finger_reach_object_rate"]["weight"],
self.cfg["env"]["reward_terms"]["object_dist"]["weight"],
self.cfg["env"]["reward_terms"]["object_rot"]["weight"],
self.env_steps_count,
self._object_goal_poses_buf,
self._object_state_history[0],
self._object_state_history[1],
self._fingertips_frames_state_history[0],
self._fingertips_frames_state_history[1],
self.cfg["env"]["reward_terms"]["keypoints_dist"]["activate"]
)
self.extras.update({"env/rewards/"+k: v.mean() for k, v in log_dict.items()})
def compute_observations(self):
# refresh memory buffers
self.gym.refresh_dof_state_tensor(self.sim)
self.gym.refresh_actor_root_state_tensor(self.sim)
self.gym.refresh_rigid_body_state_tensor(self.sim)
if self.cfg["env"]["enable_ft_sensors"] or self.cfg["env"]["asymmetric_obs"]:
self.gym.refresh_dof_force_tensor(self.sim)
self.gym.refresh_force_sensor_tensor(self.sim)
joint_torques = self._dof_torque
tip_wrenches = self._ft_sensors_values
else:
joint_torques = torch.zeros(self.num_envs, self._dims.JointTorqueDim.value, dtype=torch.float32, device=self.device)
tip_wrenches = torch.zeros(self.num_envs, self._dims.NumFingers.value * self._dims.WrenchDim.value, dtype=torch.float32, device=self.device)
# extract frame handles
fingertip_handles_indices = list(self._fingertips_handles.values())
object_indices = self.gym_indices["object"]
# update state histories
self._fingertips_frames_state_history.appendleft(self._rigid_body_state[:, fingertip_handles_indices])
self._object_state_history.appendleft(self._actors_root_state[object_indices])
# fill the observations and states buffer
self.obs_buf[:], self.states_buf[:] = compute_trifinger_observations_states(
self.cfg["env"]["asymmetric_obs"],
self._dof_position,
self._dof_velocity,
self._object_state_history[0],
self._object_goal_poses_buf,
self.actions,
self._fingertips_frames_state_history[0],
joint_torques,
tip_wrenches,
)
# normalize observations if flag is enabled
if self.cfg["env"]["normalize_obs"]:
# for normal obs
self.obs_buf = scale_transform(
self.obs_buf,
lower=self._observations_scale.low,
upper=self._observations_scale.high
)
def reset_idx(self, env_ids):
# randomization can happen only at reset time, since it can reset actor positions on GPU
if self.randomize:
self.apply_randomizations(self.randomization_params)
# A) Reset episode stats buffers
self.reset_buf[env_ids] = 0
self.progress_buf[env_ids] = 0
self._successes[env_ids] = 0
self._successes_pos[env_ids] = 0
self._successes_quat[env_ids] = 0
# B) Various randomizations at the start of the episode:
# -- Robot base position.
# -- Stage position.
# -- Coefficient of restituion and friction for robot, object, stage.
# -- Mass and size of the object
# -- Mass of robot links
# -- Robot joint state
robot_initial_state_config = self.cfg["env"]["reset_distribution"]["robot_initial_state"]
self._sample_robot_state(
env_ids,
distribution=robot_initial_state_config["type"],
dof_pos_stddev=robot_initial_state_config["dof_pos_stddev"],
dof_vel_stddev=robot_initial_state_config["dof_vel_stddev"]
)
# -- Sampling of initial pose of the object
object_initial_state_config = self.cfg["env"]["reset_distribution"]["object_initial_state"]
self._sample_object_poses(
env_ids,
distribution=object_initial_state_config["type"],
)
# -- Sampling of goal pose of the object
self._sample_object_goal_poses(
env_ids,
difficulty=self.cfg["env"]["task_difficulty"]
)
# C) Extract trifinger indices to reset
robot_indices = self.gym_indices["robot"][env_ids].to(torch.int32)
object_indices = self.gym_indices["object"][env_ids].to(torch.int32)
goal_object_indices = self.gym_indices["goal_object"][env_ids].to(torch.int32)
all_indices = torch.unique(torch.cat([robot_indices, object_indices, goal_object_indices]))
# D) Set values into simulator
# -- DOF
self.gym.set_dof_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._dof_state),
gymtorch.unwrap_tensor(robot_indices), len(robot_indices))
# -- actor root states
self.gym.set_actor_root_state_tensor_indexed(self.sim, gymtorch.unwrap_tensor(self._actors_root_state),
gymtorch.unwrap_tensor(all_indices), len(all_indices))
def _sample_robot_state(self, instances: torch.Tensor, distribution: str = 'default',
dof_pos_stddev: float = 0.0, dof_vel_stddev: float = 0.0):
"""Samples the robot DOF state based on the settings.
Type of robot initial state distribution: ["default", "random"]
- "default" means that robot is in default configuration.
- "random" means that noise is added to default configuration
- "none" means that robot is configuration is not reset between episodes.
Args:
instances: A tensor constraining indices of environment instances to reset.
distribution: Name of distribution to sample initial state from: ['default', 'random']
dof_pos_stddev: Noise scale to DOF position (used if 'type' is 'random')
dof_vel_stddev: Noise scale to DOF velocity (used if 'type' is 'random')
"""
# number of samples to generate
num_samples = instances.size()[0]
# sample dof state based on distribution type
if distribution == "none":
return
elif distribution == "default":
# set to default configuration
self._dof_position[instances] = self._robot_limits["joint_position"].default
self._dof_velocity[instances] = self._robot_limits["joint_velocity"].default
elif distribution == "random":
# sample uniform random from (-1, 1)
dof_state_dim = self._dims.JointPositionDim.value + self._dims.JointVelocityDim.value
dof_state_noise = 2 * torch.rand((num_samples, dof_state_dim,), dtype=torch.float,
device=self.device) - 1
# set to default configuration
self._dof_position[instances] = self._robot_limits["joint_position"].default
self._dof_velocity[instances] = self._robot_limits["joint_velocity"].default
# add noise
# DOF position
start_offset = 0
end_offset = self._dims.JointPositionDim.value
self._dof_position[instances] += dof_pos_stddev * dof_state_noise[:, start_offset:end_offset]
# DOF velocity
start_offset = end_offset
end_offset += self._dims.JointVelocityDim.value
self._dof_velocity[instances] += dof_vel_stddev * dof_state_noise[:, start_offset:end_offset]
else:
msg = f"Invalid robot initial state distribution. Input: {distribution} not in [`default`, `random`]."
raise ValueError(msg)
# reset robot fingertips state history
for idx in range(1, self._state_history_len):
self._fingertips_frames_state_history[idx][instances] = 0.0
def _sample_object_poses(self, instances: torch.Tensor, distribution: str):
"""Sample poses for the cube.
Type of distribution: ["default", "random", "none"]
- "default" means that pose is default configuration.
- "random" means that pose is randomly sampled on the table.
- "none" means no resetting of object pose between episodes.
Args:
instances: A tensor constraining indices of environment instances to reset.
distribution: Name of distribution to sample initial state from: ['default', 'random']
"""
# number of samples to generate
num_samples = instances.size()[0]
# sample poses based on distribution type
if distribution == "none":
return
elif distribution == "default":
pos_x, pos_y, pos_z = self._object_limits["position"].default
orientation = self._object_limits["orientation"].default
elif distribution == "random":
# For initialization
pos_x, pos_y = random_xy(num_samples, self._object_dims.max_com_distance_to_center, self.device)
# add a small offset to the height to account for scale randomisation (prevent ground intersection)
pos_z = self._object_dims.size[2] / 2 + 0.0015
orientation = random_yaw_orientation(num_samples, self.device)
else:
msg = f"Invalid object initial state distribution. Input: {distribution} " \
"not in [`default`, `random`, `none`]."
raise ValueError(msg)
# set buffers into simulator
# extract indices for goal object
object_indices = self.gym_indices["object"][instances]
# set values into buffer
# object buffer
self._object_state_history[0][instances, 0] = pos_x
self._object_state_history[0][instances, 1] = pos_y
self._object_state_history[0][instances, 2] = pos_z
self._object_state_history[0][instances, 3:7] = orientation
self._object_state_history[0][instances, 7:13] = 0
# reset object state history
for idx in range(1, self._state_history_len):
self._object_state_history[idx][instances] = 0.0
# root actor buffer
self._actors_root_state[object_indices] = self._object_state_history[0][instances]
def _sample_object_goal_poses(self, instances: torch.Tensor, difficulty: int):
"""Sample goal poses for the cube and sets them into the desired goal pose buffer.
Args:
instances: A tensor constraining indices of environment instances to reset.
difficulty: Difficulty level. The higher, the more difficult is the goal.
Possible levels are:
- -1: Random goal position on the table, including yaw orientation.
- 1: Random goal position on the table, no orientation.
- 2: Fixed goal position in the air with x,y = 0. No orientation.
- 3: Random goal position in the air, no orientation.
- 4: Random goal pose in the air, including orientation.
"""
# number of samples to generate
num_samples = instances.size()[0]
# sample poses based on task difficulty
if difficulty == -1:
# For initialization
pos_x, pos_y = random_xy(num_samples, self._object_dims.max_com_distance_to_center, self.device)
pos_z = self._object_dims.size[2] / 2
orientation = random_yaw_orientation(num_samples, self.device)
elif difficulty == 1:
# Random goal position on the table, no orientation.
pos_x, pos_y = random_xy(num_samples, self._object_dims.max_com_distance_to_center, self.device)
pos_z = self._object_dims.size[2] / 2
orientation = default_orientation(num_samples, self.device)
elif difficulty == 2:
# Fixed goal position in the air with x,y = 0. No orientation.
pos_x, pos_y = 0.0, 0.0
pos_z = self._object_dims.min_height + 0.05
orientation = default_orientation(num_samples, self.device)
elif difficulty == 3:
# Random goal position in the air, no orientation.
pos_x, pos_y = random_xy(num_samples, self._object_dims.max_com_distance_to_center, self.device)
pos_z = random_z(num_samples, self._object_dims.min_height, self._object_dims.max_height, self.device)
orientation = default_orientation(num_samples, self.device)
elif difficulty == 4:
# Random goal pose in the air, including orientation.
# Note: Set minimum height such that the cube does not intersect with the
# ground in any orientation
max_goal_radius = self._object_dims.max_com_distance_to_center
max_height = self._object_dims.max_height
orientation = random_orientation(num_samples, self.device)
# pick x, y, z according to the maximum height / radius at the current point
# in the cirriculum
pos_x, pos_y = random_xy(num_samples, max_goal_radius, self.device)
pos_z = random_z(num_samples, self._object_dims.radius_3d, max_height, self.device)
else:
msg = f"Invalid difficulty index for task: {difficulty}."
raise ValueError(msg)
# extract indices for goal object
goal_object_indices = self.gym_indices["goal_object"][instances]
# set values into buffer
# object goal buffer
self._object_goal_poses_buf[instances, 0] = pos_x
self._object_goal_poses_buf[instances, 1] = pos_y
self._object_goal_poses_buf[instances, 2] = pos_z
self._object_goal_poses_buf[instances, 3:7] = orientation
# root actor buffer
self._actors_root_state[goal_object_indices, 0:7] = self._object_goal_poses_buf[instances]
# self._actors_root_state[goal_object_indices, 2] = -10
def pre_physics_step(self, actions):
env_ids = self.reset_buf.nonzero(as_tuple=False).flatten()
if len(env_ids) > 0:
self.reset_idx(env_ids)
self.gym.simulate(self.sim)
self.actions = actions.clone().to(self.device)