-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtest.py
87 lines (67 loc) · 3.11 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import os
import torch
import numpy as np
from torch.utils.data import DataLoader
from models.models import PointINet
from models.utils import chamfer_loss, EMD
from data.interpolation_data import NuscenesDataset, KittiInterpolationDataset
import argparse
from tqdm import tqdm
def parse_args():
parser = argparse.ArgumentParser(description='Test')
parser.add_argument('--batch_size', type=int, default=1)
parser.add_argument('--gpu', type=str, default='0')
parser.add_argument('--root', type=str, default='')
parser.add_argument('--npoints', type=int, default=16384)
parser.add_argument('--pretrain_model', type=str, default='./pretrain_model/interp_kitti.pth')
parser.add_argument('--pretrain_flow_model', type=str, default='./pretrain_model/flownet3d_kitti_odometry_maxbias5.pth')
parser.add_argument('--dataset', type=str, default='kitti', help='kitti/nuscenes')
parser.add_argument('--scenelist', type=str, default='')
return parser.parse_args()
def test(args):
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if args.dataset == 'nuscenes':
scene_list = args.scenelist
test_set = NuscenesDataset(args.npoints, args.root, scene_list, True, 5, False)
elif args.dataset == 'kitti':
test_set = KittiInterpolationDataset(args.root, args.npoints, 5, False, True)
test_loader = DataLoader(test_set,
batch_size=args.batch_size,
num_workers=4,
pin_memory=True,
drop_last=True)
net = PointINet(freeze=1)
net.load_state_dict(torch.load(args.pretrain_model))
net.flow.load_state_dict(torch.load(args.pretrain_flow_model))
net.eval()
net.cuda()
with torch.no_grad():
chamfer_loss_list = []
emd_loss_list = []
pbar = tqdm(test_loader)
for data in pbar:
ini_pc, mid_pc, end_pc, ini_color, mid_color, end_color, t = data
ini_pc = ini_pc.cuda(non_blocking=True)
mid_pc = mid_pc.cuda(non_blocking=True)
end_pc = end_pc.cuda(non_blocking=True)
ini_color = ini_color.cuda(non_blocking=True)
mid_color = mid_color.cuda(non_blocking=True)
end_color = end_color.cuda(non_blocking=True)
t = t.cuda().float()
pred_mid_pc = net(ini_pc, end_pc, ini_color, end_color, t)
cd = chamfer_loss(pred_mid_pc[:,:3,:], mid_pc[:,:3,:])
emd = EMD(pred_mid_pc[:,:3,:], mid_pc[:,:3,:])
cd = cd.squeeze().cpu().numpy()
emd = emd.squeeze().cpu().numpy()
chamfer_loss_list.append(cd)
emd_loss_list.append(emd)
pbar.set_description('CD:{:.3} EMD:{:.3}'.format(cd, emd))
chamfer_loss_array = np.array(chamfer_loss_list)
emd_loss_array = np.array(emd_loss_list)
mean_chamfer_loss = np.mean(chamfer_loss_array)
mean_emd_loss = np.mean(emd_loss_array)
print("Mean chamfer distance: ", mean_chamfer_loss)
print("Mean earth mover's distance: ", mean_emd_loss)
if __name__ == '__main__':
args = parse_args()
test(args)