-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf-idf_data.py
72 lines (63 loc) · 3.09 KB
/
tf-idf_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import json
import pandas as pd
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.stem.snowball import SnowballStemmer
from nltk.corpus import stopwords
import string
import pke
import re
# Constants and settings
FILE_PATHS = {
'ACM': ('..\\data\\benchmark_data\\ACM.json', 'doc_freq/acm_doc_freq.tsv.gz'),
'NUS': ('..\\data\\benchmark_data\\NUS.json', 'doc_freq/nus_doc_freq.tsv.gz'),
'SemEval': ('..\\data\\benchmark_data\\semeval_2010.json', 'doc_freq/semeval_2010_doc_freq.tsv.gz')
}
USE_FULLTEXT = 2
MAX_LEN = 400
CURRENT_FILE = 'ACM'
# Load data
def load_data(file_path):
with open(file_path, 'r', encoding="utf8") as file:
return pd.json_normalize([json.loads(line) for line in file])
# Text preprocessing and paragraph splitting
def preprocess_and_split(data, max_len=400, use_fulltext=2):
data['abstract'] = data['fulltext'].apply(lambda x: " ".join(x.split("--")[1::2]).replace('\n', ' '))
if use_fulltext == 2:
data['abstract'] = data['abstract'].apply(lambda text: split_paragraphs(sent_tokenize(text), max_len))
data = data.explode('abstract')
return data
def split_paragraphs(sentences, max_len):
paragraphs, current_paragraph, current_length = [], '', 0
for sentence in sentences:
if current_length + len(word_tokenize(sentence)) <= max_len:
current_paragraph += ' ' + sentence
current_length += len(word_tokenize(sentence))
else:
paragraphs.append(current_paragraph.strip())
current_paragraph, current_length = sentence, len(word_tokenize(sentence))
paragraphs.append(current_paragraph.strip())
return paragraphs[:3]
# Extract keyphrases
def extract_keyphrases(data, df_file):
stemmer = SnowballStemmer('english')
stopwords_list = set(stopwords.words('english')) | set(string.punctuation)
stopwords_list.update(['-lrb-', '-rrb-', '-lcb-', '-rcb-', '-lsb-', '-rsb-'])
pred_keyphrases, gold_keyphrases = [], []
for index, text in data.iterrows():
gold_keyphrases.append([[stemmer.stem(word) for word in phrase.split()] for phrase in data.loc[index, 'keyword'].split(';')])
extractor = pke.unsupervised.TfIdf()
extractor.load_document(input=text['abstract'], language='en', normalization="stemming")
extractor.candidate_selection(n=3, stoplist=stopwords_list)
extractor.candidate_weighting(df=pke.load_document_frequency_file(input_file=df_file))
pred_keyphrases.append([kp[0].split() for kp in extractor.get_n_best(n=10)])
return pred_keyphrases, gold_keyphrases
# Load, process, and extract keyphrases
file_path, df_file = FILE_PATHS[CURRENT_FILE]
data = load_data(file_path)
data = preprocess_and_split(data, MAX_LEN, USE_FULLTEXT)
pred_keyphrases, gold_keyphrases = extract_keyphrases(data, df_file)
# Evaluation
if USE_FULLTEXT == 2:
traditional_evaluation.evaluation(y_pred=pred_keyphrases, y_test=gold_keyphrases, x_test=data, x_filename='PARAGRAPH', paragraph_assemble_docs=data.index)
else:
traditional_evaluation.evaluation(y_pred=pred_keyphrases, y_test=gold_keyphrases, x_test=data, x_filename=file_path)