-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest colors.py
110 lines (85 loc) · 3.78 KB
/
test colors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# -*- coding: utf-8 -*-
from microNN import MicroNN
from tkinter import *
from PIL import Image, ImageDraw, ImageTk
from random import random
# ----------------------------------------------------------------
etaLR = 0.5 # Learning rate
width = 800 # Window/Canvas width
height = 500 # Window/Canvas height
examples = [ ]
# ----------------------------------------------------------------
def rgb2hex(rgb):
return '#%02x%02x%02x' % rgb
# ----------------------------------------------------------------
def addExample(x, y) :
col = ( round(random()*255),
round(random()*255),
round(random()*255) )
examples.append( ( [x/width, y/height], [col] ) )
can.create_oval( x-15, y-15, x+15, y+15,
fill = rgb2hex(col),
width = 0 )
# ----------------------------------------------------------------
def process() :
global photoBuffer
if len(examples) :
for i in range(10) :
for ex in examples :
microNN.Learn(ex[0], ex[1])
for i in range(70) :
x = random()
y = random()
col = microNN.Predict([x, y])[0]
x *= width
y *= height
r = round(random()*6) + 1
drawBuffer.ellipse((x-r, y-r, x+r, y+r), fill=col)
photoBuffer = ImageTk.PhotoImage(imgBuffer)
can.create_image(0, 0, anchor=NW, image=photoBuffer)
mainWindow.after(10, process)
# ----------------------------------------------------------------
def onCanvasClick(evt) :
addExample(evt.x, evt.y)
# ----------------------------------------------------------------
microNN = MicroNN()
microNN.LearningRate = etaLR
microNN.AddInputLayer ( dimensions = MicroNN.Init1D(2),
shape = MicroNN.Shape.Neuron )
microNN.AddLayer ( dimensions = MicroNN.Init1D(10),
shape = MicroNN.Shape.Neuron,
activation = MicroNN.Activation.Gaussian,
initializer = MicroNN.LogisticInitializer(MicroNN.Initializer.HeUniform),
connStruct = MicroNN.FullyConnected )
microNN.AddLayer ( dimensions = MicroNN.Init1D(5),
shape = MicroNN.Shape.Neuron,
activation = MicroNN.Activation.Sigmoid,
initializer = MicroNN.LogisticInitializer(MicroNN.Initializer.XavierUniform),
connStruct = MicroNN.FullyConnected )
microNN.AddLayer ( dimensions = MicroNN.Init1D(5),
shape = MicroNN.Shape.Neuron,
activation = MicroNN.Activation.Sigmoid,
initializer = MicroNN.LogisticInitializer(MicroNN.Initializer.XavierUniform),
connStruct = MicroNN.FullyConnected )
microNN.AddLayer ( dimensions = MicroNN.Init1D(1),
shape = MicroNN.Shape.Color,
activation = MicroNN.Activation.Sigmoid,
initializer = MicroNN.LogisticInitializer(MicroNN.Initializer.XavierUniform),
connStruct = MicroNN.FullyConnected )
microNN.InitWeights()
mainWindow = Tk()
mainWindow.title('microNN - test colors')
mainWindow.geometry('%sx%s' % (width, height))
mainWindow.resizable(False, False)
can = Canvas( mainWindow,
width = width,
height = height,
bg = 'white',
borderwidth = 0 )
can.bind('<Button-1>', onCanvasClick)
can.pack()
imgBuffer = Image.new('RGB', (width, height), (255, 255, 255))
drawBuffer = ImageDraw.Draw(imgBuffer)
photoBuffer = None
process()
mainWindow.mainloop()