FixRes is a simple method for fixing the train-test resolution discrepancy. It can improve the performance of any convolutional neural network architecture.
The method is described in "Fixing the train-test resolution discrepancy" (links: arXiv, NeurIPS).
BibTeX reference to cite, if you use it:
@inproceedings{touvron2019FixRes,
author = {Touvron, Hugo and Vedaldi, Andrea and Douze, Matthijs and J{\'e}gou, Herv{\'e}},
title = {Fixing the train-test resolution discrepancy},
booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
year = {2019},
}
@misc{touvron2020FixEfficientNet,
author = {Touvron, Hugo and Vedaldi, Andrea and Douze, Matthijs and J{\'e}gou, Herv{\'e}},
title = {Fixing the train-test resolution discrepancy: FixEfficientNet},
journal={arXiv preprint arXiv:2003.08237},
year = {2020},
}
Please notice that our models depend on previous trained models, see References to other models
Models | Resolution | #Parameters | Top-1 / Top-5 | Extra training data |
---|---|---|---|---|
FixEfficientNet-B0 | 320 | 5.3M | 79.3 / 94.6 | |
FixEfficientNet-B0 | 320 | 5.3M | 80.2 / 95.4 | x |
FixEfficientNet-B1 | 384 | 7.8M | 81.3 / 95.7 | |
FixEfficientNet-B1 | 384 | 7.8M | 82.6 / 96.4 | x |
FixEfficientNet-B2 | 420 | 9.2M | 82.0 / 96.0 | |
FixEfficientNet-B2 | 420 | 9.2M | 83.6 / 96.9 | x |
FixEfficientNet-B3 | 472 | 12M | 83.0 / 96.4 | |
FixEfficientNet-B3 | 472 | 12M | 85.0 / 97.4 | x |
FixEfficientNet-B4 | 512 | 19M | 84.0 / 97.0 | |
FixEfficientNet-B4 | 472 | 19M | 85.9 / 97.7 | x |
FixEfficientNet-B5 | 576 | 30M | 84.7 / 97.2 | |
FixEfficientNet-B5 | 576 | 30M | 86.4/ 97.9 | x |
FixEfficientNet-B6 | 576 | 43M | 84.9 / 97.3 | |
FixEfficientNet-B6 | 680 | 43M | 86.7 / 98.0 | x |
FixEfficientNet-B7 | 632 | 66M | 85.3 / 97.4 | |
FixEfficientNet-B7 | 632 | 66M | 87.1 / 98.2 | x |
FixEfficientNet-B8 | 800 | 87.4M | 85.7 / 97.6 | |
FixEfficientNet-L2 | 600 | 480M | 88.5 / 98.7 | x |
Model definition scripts and pretrained weights are from https://github.com/rwightman/pytorch-image-models.
The corresponding papers are:
For models with extra-training data :
@misc{xie2019selftraining,
author={Qizhe Xie and Minh-Thang Luong and Eduard Hovy and Quoc V. Le,
title="{Self-training with Noisy Student improves ImageNet classification}",
journal = {arXiv preprint arXiv:1911.04252},
year=2019,
}
For models without extra-training data :
@misc{xie2019adversarial,
author={Cihang Xie and Mingxing Tan and Boqing Gong and Jiang Wang and Alan Yuille and Quoc V. Le,
title="{Adversarial Examples Improve Image Recognition}",
journal = {arXiv preprint arXiv:1911.09665},
year="2019",
}
FixRes is CC BY-NC 4.0 licensed, as found in the LICENSE file.