-
Notifications
You must be signed in to change notification settings - Fork 131
/
gapminder-ggplot2-scatterplot.r
177 lines (130 loc) · 5.28 KB
/
gapminder-ggplot2-scatterplot.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
#' ---
#' author: "Jenny Bryan"
#' output: github_document
#' ---
#+ setup, include = FALSE
library(knitr)
opts_chunk$set(fig.path = 'figure/scatterplot-', error = TRUE)
#' Note: this report is made by rendering an R script. So the narrative is very
#' minimal.
library(tibble)
library(ggplot2)
#' Load the [`gapminder`](https://github.com/jennybc/gapminder) data package.
library(gapminder)
gapminder
ggplot(gapminder, aes(x = gdpPercap, y = lifeExp)) # nothing to plot yet!
ggplot(gapminder, aes(x = gdpPercap, y = lifeExp)) +
geom_point()
p <- ggplot(gapminder, aes(x = gdpPercap, y = lifeExp)) # just initializes
#' scatterplot
p + geom_point()
#' log transformation ... quick and dirty
ggplot(gapminder, aes(x = log10(gdpPercap), y = lifeExp)) +
geom_point()
#' a better way to log transform
p + geom_point() + scale_x_log10()
#' let's make that stick
p <- p + scale_x_log10()
#' common workflow: gradually build up the plot you want
#' re-define the object 'p' as you develop "keeper" commands
#' convey continent by color: MAP continent variable to aesthetic color
p + geom_point(aes(color = continent))
## add summary(p)!
plot(gapminder, aes(x = gdpPercap, y = lifeExp, color = continent)) +
geom_point() + scale_x_log10() # in full detail, up to now
#' address overplotting: SET alpha transparency and size to a value
p + geom_point(alpha = (1/3), size = 3)
#' add a fitted curve or line
p + geom_point() + geom_smooth()
p + geom_point() + geom_smooth(lwd = 3, se = FALSE)
p + geom_point() + geom_smooth(lwd = 3, se = FALSE, method = "lm")
#' revive our interest in continents!
p + aes(color = continent) + geom_point() +
geom_smooth(lwd = 3, se = FALSE)
#' facetting: another way to exploit a factor
p + geom_point(alpha = (1/3), size = 3) +
facet_wrap(~ continent)
p + geom_point(alpha = (1/3), size = 3) +
facet_wrap(~ continent) +
geom_smooth(lwd = 2, se = FALSE)
#' exercises:
#' * plot lifeExp against year
ggplot(gapminder, aes(x = year, y = lifeExp,
color = continent)) +
geom_jitter(alpha = 1/3, size = 3)
#' * make mini-plots, split out by continent
#' HINT: use facet_wrap()
ggplot(gapminder, aes(x = year, y = lifeExp,
color = continent)) +
facet_wrap(~ continent, scales = "free_x") +
geom_jitter(alpha = 1/3, size = 3) +
scale_color_manual(values = continent_colors)
ggplot(subset(gapminder, continent != "Oceania"),
aes(x = year, y = lifeExp, group = country, color = country)) +
geom_line(lwd = 1, show_guide = FALSE) + facet_wrap(~ continent) +
scale_color_manual(values = country_colors) +
#scale_color_brewer()+
theme_bw() + theme(strip.text = element_text(size = rel(1.1)))
#' * add a fitted smooth and/or linear regression, w/ or w/o facetting
ggplot(gapminder, aes(x = year, y = lifeExp,
color = continent)) +
facet_wrap(~ continent, scales = "free_x") +
geom_jitter(alpha = 1/3, size = 3) +
scale_color_manual(values = continent_colors) +
geom_smooth(lwd = 2)
#' * use `dplyr::filter()` to plot lifeExp against
#' year for just one country or continent
jc <- "Cambodia"
gapminder %>%
filter(country == jc) %>%
ggplot(aes(x = year, y = lifeExp)) +
labs(title = jc) +
geom_line()
rwanda <- gapminder %>%
filter(country == "Rwanda")
p <- ggplot(rwanda, aes(x = year, y = lifeExp)) +
labs(title = "Rwanda") +
geom_line()
print(p)
ggsave("rwanda.pdf")
ggsave("rwanda.pdf",plot = p)
#' * other ideas?
#' plot lifeExp against year
(y <- ggplot(gapminder, aes(x = year, y = lifeExp)) + geom_point())
#' make mini-plots, split out by continent
y + facet_wrap(~ continent)
#' add a fitted smooth and/or linear regression, w/ or w/o facetting
y + geom_smooth(se = FALSE, lwd = 2) +
geom_smooth(se = FALSE, method ="lm", color = "orange", lwd = 2)
y + geom_smooth(se = FALSE, lwd = 2) +
facet_wrap(~ continent)
#' last bit on scatterplots
#' how can we "connect the dots" for one country?
#' i.e. make a spaghetti plot?
y + facet_wrap(~ continent) + geom_line() # uh, no
y + facet_wrap(~ continent) + geom_line(aes(group = country)) # yes!
y + facet_wrap(~ continent) + geom_line(aes(group = country)) +
geom_smooth(se = FALSE, lwd = 2)
#' note about subsetting data
#' sadly, ggplot() does not have a 'subset =' argument
#' so do that 'on the fly' with subset(..., subset = ...)
ggplot(subset(gapminder, country == "Zimbabwe"),
aes(x = year, y = lifeExp)) + geom_line() + geom_point()
#' or could do with dplyr::filter
suppressPackageStartupMessages(library(dplyr))
ggplot(gapminder %>% filter(country == "Zimbabwe"),
aes(x = year, y = lifeExp)) + geom_line() + geom_point()
#' let just look at four countries
jCountries <- c("Canada", "Rwanda", "Cambodia", "Mexico")
ggplot(subset(gapminder, country %in% jCountries),
aes(x = year, y = lifeExp, color = country)) + geom_line() + geom_point()
#' when you really care, make your legend easy to navigate
#' this means visual order = data order = factor level order
ggplot(subset(gapminder, country %in% jCountries),
aes(x = year, y = lifeExp, color = reorder(country, -1 * lifeExp, max))) +
geom_line() + geom_point()
#' another approach to overplotting
#' ggplot(gapminder, aes(x = gdpPercap, y = lifeExp)) +
ggplot(gapminder, aes(x = gdpPercap, y = lifeExp)) +
scale_x_log10() + geom_bin2d()
sessionInfo()