-
Notifications
You must be signed in to change notification settings - Fork 1
/
main_rewards.py
282 lines (262 loc) · 13 KB
/
main_rewards.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import os
import sys
import warnings
warnings.filterwarnings("ignore")
import json
import torch
import pickle
import argparse
import numpy as np
from tqdm import tqdm
from collections import defaultdict
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import BertTokenizer, BertConfig,BertForSequenceClassification
from transformers import RobertaTokenizer, RobertaConfig, RobertaForSequenceClassification
from src.utils import set_seed, get_logger, str2bool
from rewards.rewards_dataloader import RewardsDataset as Dataset
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
def get_args():
parser = argparse.ArgumentParser()
# dataset
parser.add_argument("--dataset", type=str, default="rewards/rewardsdataset.pkl")
parser.add_argument("--max_context_length", type=int, default=256)
parser.add_argument("--seeker_idx", type=int, default=0)
parser.add_argument("--supporter_idx", type=int, default=1)
parser.add_argument("--is_situation", type=str2bool, default=False)
# model parameter
parser.add_argument("--pretrained_model", type=str, default="./rewards/bert/")
parser.add_argument("--pretrained_config", type=str, default="./rewards/bert/")
parser.add_argument("--pretrained_tokenizer", type=str, default="./rewards/bert/")
# train parameters
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--learning_rate", type=float, default=1e-5)
parser.add_argument("--train_epochs", type=int, default=5)
parser.add_argument("--early_epochs", type=int, default=0)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--weight_decay", type=float, default=0.0)
parser.add_argument("--adam_epsilon", type=float, default=1e-8)
parser.add_argument("--warmup_steps", type=int, default=120)
parser.add_argument("--max_grad_norm", type=float, default=1.0)
parser.add_argument("--n_class", type=int, default=2)
parser.add_argument("--is_train", type=str, default=False)
parser.add_argument("--is_test", type=str, default=False)
parser.add_argument("--is_evaluate", type=str, default=False)
parser.add_argument("--is_pretrain", type=str2bool, default=False)
parser.add_argument("--is_with_pretrain", type=str2bool, default=False)
parser.add_argument("--is_grid_search", type=str2bool, default=False)
parser.add_argument("--is_evaluate_coher_elicit", type=str2bool, default=False)
parser.add_argument("--is_load_grid", type=str2bool, default=False)
parser.add_argument("--load_grid_idx", type=int, default=20)
parser.add_argument("--max_length", type=int, default=512)
# other
parser.add_argument("--save_method", type=str, default="ppl")
parser.add_argument("--direction", type=str, default="forward")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--gpu", type=int, default=0)
parser.add_argument("--save_step", type=int, default=100)
parser.add_argument("--save_rewards_path", type=str, default="rewards/save_model/")
parser.add_argument("--save_rewards", type=str, default="rewards/save_model/tensorboard/")
parser.add_argument("--save_rewards_test_log", type=str, default="rewards/save_model/log/rewards_test.log")
parser.add_argument("--rewards_results_file", type=str, default="rewards/save_model/rewards_results.json")
parser.add_argument("--save_rewards_evaluate_log", type=str, default="rewards/save_model/log/rewards_evaluate.log")
parser.add_argument("--results_file", type=str, default="save/results.json")
parser.add_argument("--save_test_log", type=str, default="save/log/test.log")
parser.add_argument("--save_evaluate_log", type=str, default="save/log/evaluate.log")
parser.add_argument("--turn_reward_weight", type=float, default=1.0)
parser.add_argument("--conversation_reward_weight", type=float, default=1.0)
parser.add_argument("--context_reward_weight", type=float, default=1.0)
parser.add_argument("--future_reward_weight", type=float, default=1.0)
args = parser.parse_args()
cuda_id = "cuda:" + str(args.gpu)
args.device = torch.device(cuda_id) if torch.cuda.is_available() else 'cpu'
return args
class RewardsModelAgent:
def __init__(self, args, additional_special_tokens):
self.args = args
# prepare model
self.pretrained_config = BertConfig.from_pretrained(args.pretrained_config)
self.pretrained_config.num_labels = args.n_class
self.pretrained_tokenizer = BertTokenizer.from_pretrained(args.pretrained_tokenizer)
self.pretrained_tokenizer.add_tokens(additional_special_tokens)
self.model = BertForSequenceClassification.from_pretrained(args.pretrained_model, config=self.pretrained_config).to(args.device)
self.model.resize_token_embeddings(len(self.pretrained_tokenizer))
# preprocess data
self.preprocess_data()
# prepare optimizer
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": self.args.weight_decay,
},
{"params": [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
self.optimizer = AdamW(
optimizer_grouped_parameters,
lr = self.args.learning_rate,
eps = self.args.adam_epsilon
)
total_steps = len(self.training_dataloader) // self.args.gradient_accumulation_steps * self.args.train_epochs
self.scheduler = get_linear_schedule_with_warmup(
self.optimizer,
num_warmup_steps = self.args.warmup_steps,
num_training_steps = total_steps
)
print("Total Parameters:", sum([p.nelement() for p in self.model.parameters()]))
self.log_writer = SummaryWriter(log_dir=args.save_rewards)
def preprocess_data(self):
[data_train, data_dev, data_test] = pickle.load(open(self.args.dataset, "rb"))
# train
training_dataset = Dataset(self.args, data_train, self.pretrained_tokenizer)
self.training_dataloader = DataLoader(
dataset=training_dataset,
batch_size=self.args.batch_size,
shuffle=True,
collate_fn=training_dataset.collate_fn,
)
# dev
dev_dataset = Dataset(self.args, data_dev, self.pretrained_tokenizer)
self.dev_dataloader = DataLoader(
dataset=dev_dataset,
batch_size=self.args.batch_size,
shuffle=True,
collate_fn=dev_dataset.collate_fn,
)
# test
testing_dataset = Dataset(self.args, data_test, self.pretrained_tokenizer)
self.test_dataloader = DataLoader(
dataset=testing_dataset,
batch_size=1,
shuffle=False,
collate_fn=testing_dataset.collate_fn,
)
def save(self, file_name):
torch.save(self.model.state_dict(), file_name)
def load(self, file_name):
self.model.load_state_dict(torch.load(file_name, map_location=self.args.device))
def train(self, save_path):
self.model.train()
self.model.zero_grad()
self.optimizer.zero_grad()
iter_counter = 1
best_acc = 0.0
for epoch in range(1, self.args.train_epochs+1):
train_data_iteration = tqdm(
self.training_dataloader,
desc=f"Training epoch: {epoch}",
total=len(self.training_dataloader),
bar_format="{l_bar}{r_bar}"
)
for train_data in train_data_iteration:
self.model.train()
outputs = self.model(
input_ids = train_data["input_ids"],
token_type_ids = train_data["token_type_ids"],
attention_mask = train_data["attention_mask"],
labels = train_data["label"]
)
loss, logits = outputs["loss"], outputs["logits"]
# optimize
loss.backward()
if iter_counter % self.args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm)
self.optimizer.step()
self.scheduler.step()
self.model.zero_grad()
self.log_writer.add_scalars("lr", {"training": self.scheduler.get_lr()[0]}, iter_counter)
# write log
self.log_writer.add_scalars("loss", {"training": loss.item()}, iter_counter)
# dev
if iter_counter % self.args.save_step == 0:
dev_loss, dev_acc, dev_f1 = self.dev(epoch, iter_counter)
self.log_writer.add_scalars("acc", {"developing": dev_acc}, iter_counter)
self.log_writer.add_scalars("loss", {"developing": dev_loss}, iter_counter)
self.log_writer.add_scalars("f1", {"developing": dev_f1}, iter_counter)
if dev_acc > best_acc:
best_acc = dev_acc
self.save(save_path)
# update iter
iter_counter += 1
def dev(self, epoch, iter_counter):
self.model.eval()
dev_data_iteration = tqdm(
self.dev_dataloader,
desc=f"dev epoch: {epoch}, iter: {iter_counter}",
total=len(self.dev_dataloader),
bar_format="{l_bar}{r_bar}"
)
dev_loss_list = list()
pred_labels = []
truth_labels = []
with torch.no_grad():
for dev_data in dev_data_iteration:
outputs = self.model(
input_ids = dev_data["input_ids"],
token_type_ids = dev_data["token_type_ids"],
attention_mask = dev_data["attention_mask"],
labels = dev_data["label"]
)
loss, logits = outputs["loss"], outputs["logits"]
dev_loss_list.append(loss.item())
logits = logits.detach().cpu().numpy()
preds = np.argmax(logits, axis=1).flatten()
pred_labels.extend(preds.tolist())
truth_labels.extend(dev_data["label"].cpu())
assert len(pred_labels) == len(truth_labels)
dev_loss = np.mean(dev_loss_list)
accuracy = accuracy_score(truth_labels, pred_labels)
f1 = f1_score(truth_labels, pred_labels, average='macro')
return dev_loss, accuracy, f1
def test(self, load_path):
self.model.eval()
self.load(load_path)
test_logger = get_logger(self.args.save_rewards_test_log)
test_data_iteration = tqdm(
self.test_dataloader,
desc="testing...",
total=len(self.test_dataloader),
bar_format="{l_bar}{r_bar}"
)
test_loss_list = list()
pred_labels = []
truth_labels = []
with torch.no_grad():
for test_data in test_data_iteration:
outputs = self.model(
input_ids = test_data["input_ids"],
token_type_ids = test_data["token_type_ids"],
attention_mask = test_data["attention_mask"],
labels = test_data["label"]
)
loss, logits = outputs["loss"], outputs["logits"]
test_loss_list.append(loss.item())
logits = logits.detach().cpu().numpy()
preds = np.argmax(logits, axis=1).flatten()
pred_labels.extend(preds.tolist())
truth_labels.extend(test_data["label"].cpu())
assert len(pred_labels) == len(truth_labels)
test_loss = np.mean(test_loss_list)
accuracy = accuracy_score(truth_labels, pred_labels)
f1 = f1_score(truth_labels, pred_labels, average='macro')
test_logger.info(f"test_loss: {test_loss} , test_acc: {accuracy}, test_f1: {f1}")
def main():
args = get_args()
set_seed(args.seed)
####### debug ##########
# args.is_train = True
# args.batch_size = 2
# args.simulator = "dialoggpt"
####### debug ##########
additional_special_tokens = ["[Question]","[Reflection of feelings]","[Information]","[Restatement or Paraphrasing]","[Others]","[Self-disclosure]","[Affirmation and Reassurance]","[Providing Suggestions]", "[KWS]"]
rewardsmodel = RewardsModelAgent(args, additional_special_tokens)
save_path = args.save_rewards_path + f"{args.direction}-rewardsmodel.ckpt"
if args.is_train:
print("RewardsModel Training Start......")
rewardsmodel.train(save_path)
if args.is_test and os.path.exists(save_path):
print("RewardsModel Testing Start......")
rewardsmodel.test(save_path)
if __name__=="__main__":
main()