-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfatrop_nlpsol.py
152 lines (118 loc) · 3.26 KB
/
fatrop_nlpsol.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import casadi as ca
from numpy import sin, cos, tan, pi
pos = ca.MX.sym('pos',2)
theta = ca.MX.sym('theta')
delta = ca.MX.sym('delta')
V = ca.MX.sym('V')
# States
x = ca.vertcat(pos,theta)
# Controls
u = ca.vertcat(delta,V)
L = 1
# ODE rhs
# Bicycle model
# (S. LaValle. Planning Algorithms. Cambridge University Press, 2006, pp. 724–725.)
ode = ca.vertcat(V*ca.vertcat(cos(theta),sin(theta)),V/L*tan(delta))
# Discretize system
dt = ca.MX.sym("dt")
sys = {}
sys["x"] = x
sys["u"] = u
sys["p"] = dt
sys["ode"] = ode*dt # Time scaling
intg = ca.integrator('intg','rk',sys,0,1,{"simplify":True, "number_of_finite_elements": 4})
F = ca.Function('F',[x,u,dt],[intg(x0=x,u=u,p=dt)["xf"]],["x","u","dt"],["xnext"])
nx = x.numel()
nu = u.numel()
f = 0 # Objective
x = [] # List of decision variable symbols
lbx = [];ubx = [] # Simple bounds
x0 = [] # Initial value
g = [] # Constraints list
lbg = [];ubg = [] # Constraint bounds
equality = [] # Boolean indicator helping structure detection
p = [] # Parameters
p_val = [] # Parameter values
N = 20
T0 = 10
X = []
U = []
T = []
for k in range(N+1):
sym = ca.MX.sym("X",nx)
x.append(sym)
X.append(sym)
x0.append(ca.vertcat(0,k*T0/N,pi/2))
lbx.append(-ca.DM.inf(nx,1));ubx.append(ca.DM.inf(nx,1))
sym = ca.MX.sym("T")
x.append(sym)
T.append(sym)
x0.append(T0)
lbx.append(0);ubx.append(ca.inf)
if k<N:
sym = ca.MX.sym("U",nu)
x.append(sym)
U.append(sym)
x0.append(ca.vertcat(0,1))
lbx.append(-pi/6);ubx.append(pi/6) # -pi/6 <= delta<= pi/6
lbx.append(0);ubx.append(1) # 0 <= V<=1
# Round obstacle
pos0 = ca.vertcat(0.2,5)
r0 = 1
X0 = ca.MX.sym("X0",nx)
p.append(X0)
p_val.append(ca.vertcat(0,0,pi/2))
f = sum(T) # Time Optimal objective
for k in range(N):
# Multiple shooting gap-closing constraint
g.append(X[k+1]-F(X[k],U[k],T[k]/N))
lbg.append(ca.DM.zeros(nx,1))
ubg.append(ca.DM.zeros(nx,1))
equality += [True]*nx
g.append(T[k+1]-T[k])
lbg.append(0);ubg.append(0)
equality += [True]
if k==0:
# Initial constraints
g.append(X[0]-X0)
lbg.append(ca.DM.zeros(nx,1))
ubg.append(ca.DM.zeros(nx,1))
equality += [True]*nx
# Obstacle avoidance
pos = X[k][:2]
g.append(ca.sumsqr(pos-pos0))
lbg.append(r0**2);ubg.append(ca.inf)
equality += [False]
if k==N-1:
# Final constraints
g.append(X[-1][:2])
lbg.append(ca.vertcat(0,10));ubg.append(ca.vertcat(0,10))
equality += [True,True]
print(X[0][0])
# Add some regularization
for k in range(N+1):
f += X[k][0]**2
# Solve the problem
nlp = {}
nlp["f"] = f
nlp["g"] = ca.vcat(g)
nlp["x"] = ca.vcat(x)
nlp["p"] = ca.vcat(p)
options = {}
options["expand"] = True
options["fatrop"] = {"mu_init": 0.1}
options["structure_detection"] = "auto"
options["debug"] = True
options["equality"] = equality
# (codegen of helper functions)
#options["jit"] = True
#options["jit_temp_suffix"] = False
#options["jit_options"] = {"flags": ["-O3"],"compiler": "ccache gcc"}
solver = ca.nlpsol('solver',"fatrop",nlp,options)
res = solver(x0 = ca.vcat(x0),
lbg = ca.vcat(lbg),
ubg = ca.vcat(ubg),
lbx = ca.vcat(lbx),
ubx = ca.vcat(ubx),
p = ca.vcat(p_val)
)