-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_macer.py
120 lines (96 loc) · 4.97 KB
/
train_macer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# this file is based on code publicly available at
# https://github.com/locuslab/smoothing
# written by Jeremy Cohen.
import argparse
import time
import torch
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from architectures import ARCHITECTURES
from datasets import DATASETS, get_num_classes
from train_utils import log, test
from train_utils import prologue
from third_party.macer import macer_train
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('dataset', type=str, choices=DATASETS)
parser.add_argument('arch', type=str, choices=ARCHITECTURES)
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch', default=256, type=int, metavar='N',
help='batchsize (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate', dest='lr')
parser.add_argument('--lr_step_size', type=int, default=30,
help='How often to decrease learning by gamma.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--noise_sd', default=0.0, type=float,
help="standard deviation of Gaussian noise for data augmentation")
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--id', default=None, type=int,
help='experiment id, `randint(10000)` if None')
#####################
# Options added by Salman et al. (2019)
parser.add_argument('--resume', action='store_true',
help='if true, tries to resume training from existing checkpoint')
parser.add_argument('--pretrained-model', type=str, default='',
help='Path to a pretrained model')
#####################
# MACER-specific
parser.add_argument('--num-noise-vec', default=16, type=int,
help="number of noise vectors to use for finding adversarial examples. `m_train` in the paper.")
parser.add_argument('--beta', default=16.0, type=float)
parser.add_argument('--lbd', default=16.0, type=float)
parser.add_argument('--margin', default=8.0, type=float)
parser.add_argument('--deferred', action='store_true',
help='if true, MACER is applied after the first learning rate drop')
args = parser.parse_args()
if args.deferred:
mode = f"macer_deferred{args.lr_step_size}"
else:
mode = f"macer"
args.outdir = f"logs/{args.dataset}/{mode}/num_{args.num_noise_vec}/lbd_{args.lbd}/gamma_{args.margin}/beta_{args.beta}/noise_{args.noise_sd}"
def main():
train_loader, test_loader, criterion, model, optimizer, scheduler, \
starting_epoch, logfilename, model_path, device, writer = prologue(args)
for epoch in range(starting_epoch, args.epochs):
before = time.time()
train_loss = train(train_loader, model, optimizer, epoch, args.noise_sd, device, writer)
test_loss, test_acc = test(test_loader, model, criterion, epoch, args.noise_sd, device, writer, args.print_freq)
after = time.time()
log(logfilename, "{}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}".format(
epoch, after - before,
scheduler.get_lr()[0], train_loss, 0.0, test_loss, test_acc))
# In PyTorch 1.1.0 and later, you should call `optimizer.step()` before `lr_scheduler.step()`.
# See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
scheduler.step(epoch)
torch.save({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, model_path)
def train(loader: DataLoader, model: torch.nn.Module, optimizer: Optimizer,
epoch: int, noise_sd: float, device: torch.device, writer=None):
# switch to train mode
model.train()
lbd = args.lbd
if args.deferred and epoch <= args.lr_step_size:
lbd = 0
cl, rl = macer_train(sigma=noise_sd, lbd=lbd, gauss_num=args.num_noise_vec,
beta=args.beta, gamma=args.margin,
num_classes=get_num_classes(args.dataset),
model=model, trainloader=loader, optimizer=optimizer, device=device)
writer.add_scalar('loss/train', cl, epoch)
writer.add_scalar('loss/robust', rl, epoch)
return cl
if __name__ == "__main__":
main()