-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_salman.py
209 lines (170 loc) · 8.65 KB
/
train_salman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# this file is based on code publicly available at
# https://github.com/Hadisalman/smoothing-adversarial
# written by Hadi Salman.
import argparse
import time
import numpy as np
import torch
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from architectures import ARCHITECTURES
from datasets import DATASETS
from third_party.smoothadv import Attacker, PGD_L2, DDN
from train_utils import AverageMeter, accuracy, log, test, requires_grad_
from train_utils import prologue
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('dataset', type=str, choices=DATASETS)
parser.add_argument('arch', type=str, choices=ARCHITECTURES)
parser.add_argument('--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch', default=256, type=int, metavar='N',
help='batchsize (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate', dest='lr')
parser.add_argument('--lr_step_size', type=int, default=30,
help='How often to decrease learning by gamma.')
parser.add_argument('--gamma', type=float, default=0.1,
help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--noise_sd', default=0.0, type=float,
help="standard deviation of Gaussian noise for data augmentation")
parser.add_argument('--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--id', default=None, type=int,
help='experiment id, `randint(10000)` if None')
#####################
# Options added by Salman et al. (2019)
parser.add_argument('--resume', action='store_true',
help='if true, tries to resume training from existing checkpoint')
parser.add_argument('--pretrained-model', type=str, default='',
help='Path to a pretrained model')
#####################
# Attack params
parser.add_argument('--attack', default='DDN', type=str, choices=['DDN', 'PGD'])
parser.add_argument('--epsilon', default=64.0, type=float)
parser.add_argument('--num-steps', default=10, type=int)
parser.add_argument('--warmup', default=1, type=int, help="Number of epochs over which "
"the maximum allowed perturbation increases linearly "
"from zero to args.epsilon.")
parser.add_argument('--num-noise-vec', default=1, type=int,
help="number of noise vectors to use for finding adversarial examples. `m_train` in the paper.")
parser.add_argument('--no-grad-attack', action='store_true',
help="Choice of whether to use gradients during attack or do the cheap trick")
# PGD-specific
parser.add_argument('--random-start', default=True, type=bool)
# DDN-specific
parser.add_argument('--init-norm-DDN', default=256.0, type=float)
parser.add_argument('--gamma-DDN', default=0.05, type=float)
args = parser.parse_args()
if args.attack == 'PGD':
mode = f"pgd_{args.epsilon}_{args.num_steps}_{args.warmup}"
elif args.attack == 'DDN':
mode = f"ddn_{args.epsilon}_{args.num_steps}_{args.warmup}_{args.init_norm_DDN}_{args.gamma_DDN}"
else:
raise Exception('Unknown attack')
args.outdir = f"logs/{args.dataset}/salman/{mode}/num_{args.num_noise_vec}/noise_{args.noise_sd}"
args.epsilon /= 256.0
args.init_norm_DDN /= 256.0
def main():
train_loader, test_loader, criterion, model, optimizer, scheduler, \
starting_epoch, logfilename, model_path, device, writer = prologue(args)
if args.attack == 'PGD':
print('Attacker is PGD')
attacker = PGD_L2(steps=args.num_steps, device=device, max_norm=args.epsilon)
elif args.attack == 'DDN':
print('Attacker is DDN')
attacker = DDN(steps=args.num_steps, device=device, max_norm=args.epsilon,
init_norm=args.init_norm_DDN, gamma=args.gamma_DDN)
else:
raise Exception('Unknown attack')
for epoch in range(starting_epoch, args.epochs):
attacker.max_norm = np.min([args.epsilon, (epoch + 1) * args.epsilon / args.warmup])
attacker.init_norm = np.min([args.epsilon, (epoch + 1) * args.epsilon / args.warmup])
before = time.time()
train_loss, train_acc = train(train_loader, model, criterion, optimizer, epoch, args.noise_sd,
attacker, device, writer)
test_loss, test_acc = test(test_loader, model, criterion, epoch, args.noise_sd, device, writer, args.print_freq)
after = time.time()
log(logfilename, "{}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}\t{:.3}".format(
epoch, after - before,
scheduler.get_lr()[0], train_loss, train_acc, test_loss, test_acc))
# In PyTorch 1.1.0 and later, you should call `optimizer.step()` before `lr_scheduler.step()`.
# See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
scheduler.step(epoch)
torch.save({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'optimizer': optimizer.state_dict(),
}, model_path)
def _chunk_minibatch(batch, num_batches):
X, y = batch
batch_size = len(X) // num_batches
for i in range(num_batches):
yield X[i*batch_size : (i+1)*batch_size], y[i*batch_size : (i+1)*batch_size]
def train(loader: DataLoader, model: torch.nn.Module, criterion, optimizer: Optimizer, epoch: int, noise_sd: float,
attacker: Attacker, device: torch.device, writer=None):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
# switch to train mode
model.train()
requires_grad_(model, True)
for i, batch in enumerate(loader):
# measure data loading time
data_time.update(time.time() - end)
mini_batches = _chunk_minibatch(batch, args.num_noise_vec)
for inputs, targets in mini_batches:
inputs, targets = inputs.to(device), targets.to(device)
inputs = inputs.repeat((1, args.num_noise_vec, 1, 1)).reshape(-1, *batch[0].shape[1:])
batch_size = inputs.size(0)
# augment inputs with noise
noise = torch.randn_like(inputs, device=device) * noise_sd
requires_grad_(model, False)
model.eval()
inputs = attacker.attack(model, inputs, targets,
noise=noise, num_noise_vectors=args.num_noise_vec,
no_grad=args.no_grad_attack)
model.train()
requires_grad_(model, True)
noisy_inputs = inputs + noise
targets = targets.unsqueeze(1).repeat(1, args.num_noise_vec).reshape(-1, 1).squeeze()
outputs = model(noisy_inputs)
loss = criterion(outputs, targets)
acc1, acc5 = accuracy(outputs, targets, topk=(1, 5))
losses.update(loss.item(), batch_size)
top1.update(acc1.item(), batch_size)
top5.update(acc5.item(), batch_size)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.avg:.3f}\t'
'Data {data_time.avg:.3f}\t'
'Loss {loss.avg:.4f}\t'
'Acc@1 {top1.avg:.3f}\t'
'Acc@5 {top5.avg:.3f}'.format(
epoch, i, len(loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5))
if writer:
writer.add_scalar('loss/train', losses.avg, epoch)
writer.add_scalar('batch_time', batch_time.avg, epoch)
writer.add_scalar('accuracy/train@1', top1.avg, epoch)
writer.add_scalar('accuracy/train@5', top5.avg, epoch)
return (losses.avg, top1.avg)
if __name__ == "__main__":
main()