-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
231 lines (177 loc) · 9.13 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.utils import save_image
import numpy as np
import os
from pathlib import Path
import ruamel.yaml as yaml
import argparse
from logger import MetricLogger
from utils import get_surrogate, get_target, normalize_list
from dataset.dataCluster import DataFolderWithLabel, DataFolderWithClassNoise
from models.generator import ResnetGenerator
from tqdm import tqdm
def train_gnet(args, config):
train_transform = transforms.Compose([
transforms.Resize(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
normalize = normalize_list[config['normalize']]
net = get_surrogate(config['model'], config['num_classes']).eval().to(args.device)
# sd = torch.load(config['checkpoint'], map_location='cpu')
# net.load_state_dict(sd)
cluster = torch.load(config['cluster'], map_location='cpu')
num_clusters = cluster['centers'].shape[0]
train_dataset = DataFolderWithLabel(config['dataset']['config']['train'], cluster['pred_idx'], train_transform)
train_loader = DataLoader(train_dataset, batch_size=256, num_workers=8)
for cluster_idx in range(num_clusters):
noise = torch.zeros((1, 3, 224, 224))
noise.uniform_(0, 1)
noise = noise.to(args.device)
g_net = ResnetGenerator(3, 3, 64, norm_type='batch', act_type='relu')
g_net.to(args.device)
optimizer = torch.optim.Adam(g_net.parameters(), lr=config['lr'], weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, config['num_epoch'] * len(train_loader), eta_min=1e-6)
criterion = torch.nn.KLDivLoss(reduction='batchmean')
logger = MetricLogger()
features = {}
def hook(layer, inp, out):
features['feat'] = inp[0]
net.fc.register_forward_hook(hook)
for epoch in range(config['num_epoch']):
g_net.train()
header = 'Class idx {}\tTrain Epoch {}:'.format(cluster_idx, epoch)
for images, _, _ in logger.log_every(train_loader, 50, header=header):
images = images.to(args.device)
delta_im = g_net(noise).repeat(images.shape[0], 1, 1, 1)
if config['norm'] == 'l2':
temp = torch.norm(delta_im.view(delta_im.shape[0], -1), dim=1).view(-1, 1, 1, 1)
delta_im = delta_im * config['epsilon'] / temp
else:
delta_im = torch.clamp(delta_im, -config['epsilon'] / 255., config['epsilon'] / 255)
images_adv = torch.clamp(images + delta_im, 0, 1)
target_labels = (torch.ones(len(images)).long() * cluster_idx + config['target_offset']) % num_clusters
target_labels = target_labels.to(args.device)
anchors = torch.stack([cluster['centers'][i] for i in target_labels], dim=0).to(args.device)
net(normalize(images_adv))
loss = criterion(features['feat'].log_softmax(dim=-1), anchors.softmax(dim=-1))
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
logger.meters['train_loss'].update(loss.item(), n=len(images))
with torch.no_grad():
perturbation = g_net(noise)
torch.save({'state_dict': g_net.state_dict(), 'init_noise': noise, 'perturbation': perturbation}, os.path.join(config['output_dir'], f'perturbation_{cluster_idx}.pth'))
logger.clear()
def train(args, config):
train_transform = transforms.Compose([
transforms.Resize(256),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
])
test_transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
])
normalize = normalize_list[config['normalize']]
num_classes = config['dataset']['config']['num_classes']
train_dataset = DataFolderWithLabel(config['ae_dir'], None, transform=train_transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=config['batch_size'], num_workers=8)
test_dataset = DataFolderWithLabel(config['dataset']['config']['test'], None, test_transform)
test_loader = DataLoader(test_dataset, batch_size=config['batch_size'], num_workers=8)
net = get_target(config['model'], num_classes).to(args.device)
optimizer = torch.optim.SGD(net.parameters(), lr=config['lr'], momentum=0.9, weight_decay=5e-4)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, config['num_epoch'] * len(train_loader), eta_min=1e-6)
criterion = torch.nn.CrossEntropyLoss()
logger = MetricLogger()
for epoch in range(config['num_epoch']):
net.train()
header = 'Train Epoch {}:'.format(epoch)
for images, labels, _ in logger.log_every(train_loader, 50, header=header):
images, labels = images.to(args.device), labels.to(args.device)
logits = net(normalize(images))
loss = criterion(logits, labels)
pred_idx = torch.argmax(logits.detach(), 1)
correct = (pred_idx == labels).sum().item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
logger.meters['train_loss'].update(loss.item(), n=len(images))
logger.meters['train_acc'].update(correct / len(images), n=len(images))
net.eval()
header = 'Test Epoch {}:'.format(epoch)
for images, labels, _ in logger.log_every(test_loader, 50, header=header):
images, labels = images.to(args.device), labels.to(args.device)
with torch.no_grad():
logits = net(normalize(images))
loss = criterion(logits, labels)
pred_idx = torch.argmax(logits.detach(), 1)
correct = (pred_idx == labels).sum().item()
logger.meters['test_loss'].update(loss.item(), n=len(images))
logger.meters['test_acc'].update(correct / len(images), n=len(images))
torch.save({'state_dict': net.state_dict()}, os.path.join(config['output_dir'], 'checkpoint.pth'))
logger.clear()
def generate(args, config):
normalize = normalize_list[config['normalize']]
num_classes = config['dataset']['config']['num_classes']
cluster = torch.load(config['cluster'], map_location='cpu')
num_clusters = cluster['centers'].shape[0]
noise = []
for i in range(num_clusters):
noise.append(torch.load(os.path.join(config['perturbation_dir'], f'perturbation_{i}.pth'), map_location='cpu')['perturbation'])
noise = torch.cat(noise, dim=0)
noise = torch.clamp(noise, -config['epsilon'] / 255., config['epsilon'] / 255)
train_dataset = DataFolderWithClassNoise(config['dataset']['config']['train'], cluster['pred_idx'], noise=noise, resize_type=config['resize_type'])
train_loader = DataLoader(train_dataset, batch_size=1, num_workers=8)
count = [0 for _ in range(config['dataset']['config']['num_classes'])]
output_dir = config['ae_dir']
print(output_dir)
for i in range(len(count)):
Path(os.path.join(output_dir, str(i))).mkdir(parents=True, exist_ok=True)
print('Done floder')
logger = MetricLogger()
header = 'Generate cluster-wise UEs:'
count = [0 for _ in range(num_classes)]
for i in range(len(count)):
Path(os.path.join(config['output_dir'], '..', 'ae', str(i))).mkdir(parents=True, exist_ok=True)
for images, ground_truth, _ in train_loader:
images_adv = images
ground_truth = ground_truth.tolist()
for i in range(len(images)):
gt = ground_truth[i]
save_image(images_adv[i], os.path.join(config['output_dir'], '..', 'ae', str(gt), f'{count[gt]}.png'))
count[gt] += 1
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='config/stage_2.yaml')
parser.add_argument('--experiment', '-e', type=str, default='uc_pets_cliprn50_rn18')
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--stage', type=int, default=2)
args = parser.parse_args()
config = yaml.load(open(args.config, 'r'), Loader=yaml.Loader)[args.experiment]
data_config = yaml.load(open(config['data_config'], 'r'), Loader=yaml.Loader)[config['dataset']]
config['dataset'] = {'name': config['dataset'], 'config': data_config}
Path(config['output_dir']).mkdir(parents=True, exist_ok=True)
if args.stage == 1:
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
yaml.dump(config, open(os.path.join(config['output_dir'], '..', 'config.yaml'), 'w+'))
train_gnet(args, config)
elif args.stage == 2:
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
np.random.seed(args.seed)
yaml.dump(config, open(os.path.join(config['output_dir'], 'config.yaml'), 'w+'))
generate(args, config)
train(args, config)
else:
raise KeyError