-
Notifications
You must be signed in to change notification settings - Fork 66
/
README.Rmd
56 lines (43 loc) · 2.14 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
output:
github_document:
html_preview: false
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "README-"
)
```
[![CRAN version](http://www.r-pkg.org/badges/version/Rtsne)](https://cran.r-project.org/package=Rtsne/)
[![R-CMD-check](https://github.com/jkrijthe/Rtsne/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/jkrijthe/Rtsne/actions/workflows/R-CMD-check.yaml)
[![codecov.io](https://codecov.io/github/jkrijthe/Rtsne/coverage.svg?branch=master)](https://app.codecov.io/github/jkrijthe/Rtsne?branch=master)
[![CRAN mirror downloads](http://cranlogs.r-pkg.org/badges/Rtsne)](https://cran.r-project.org/package=Rtsne/)
# R wrapper for Van der Maaten's Barnes-Hut implementation of t-Distributed Stochastic Neighbor Embedding
## Installation
To install from CRAN:
```{r, eval = FALSE}
install.packages("Rtsne") # Install Rtsne package from CRAN
```
To install the latest version from the github repository, use:
```{r, eval = FALSE}
if(!require(devtools)) install.packages("devtools") # If not already installed
devtools::install_github("jkrijthe/Rtsne")
```
## Usage
After installing the package, use the following code to run a simple example (to install, see below).
```{r example, fig.path="tools/"}
library(Rtsne) # Load package
iris_unique <- unique(iris) # Remove duplicates
set.seed(42) # Sets seed for reproducibility
tsne_out <- Rtsne(as.matrix(iris_unique[,1:4])) # Run TSNE
plot(tsne_out$Y,col=iris_unique$Species,asp=1) # Plot the result
```
# Details
This R package offers a wrapper around the Barnes-Hut TSNE C++ implementation of [2] [3]. Changes were made to the original code to allow it to function as an R package and to add additional functionality and speed improvements.
# References
[1] L.J.P. van der Maaten and G.E. Hinton. "Visualizing High-Dimensional Data Using t-SNE." Journal of Machine Learning Research 9(Nov):2579-2605, 2008.
[2] L.J.P van der Maaten. "Accelerating t-SNE using tree-based algorithms." Journal of Machine Learning Research 15.1:3221-3245, 2014.
[3] https://lvdmaaten.github.io/tsne/