-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathlane_finder.py
364 lines (305 loc) · 16.8 KB
/
lane_finder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import cv2
import matplotlib.pyplot as plt
import numpy as np
import glob
import os
from camera_calibrate import load_camera_calibration
from perspective_transform import *
from thresholding import *
from moviepy.editor import VideoFileClip
from vehicle_detect_nn import VehicleDetector
def save_image(image, file_name):
cv2.imwrite(file_name, image)
def bin_to_rgb(bin_image):
return cv2.cvtColor(bin_image * 255, cv2.COLOR_GRAY2BGR)
def compose_images(dst_image, src_image, split_rows, split_columns, which_section):
assert 0 < which_section <= split_rows * split_columns
if split_rows > split_columns:
newH = int(dst_image.shape[0] / split_rows)
dim = (int(dst_image.shape[1] * newH / dst_image.shape[0]), newH)
else:
newW = int(dst_image.shape[1] / split_columns)
dim = (newW, int(dst_image.shape[0] * newW / dst_image.shape[1]))
if len(src_image.shape) == 2:
srcN = bin_to_rgb(src_image)
else:
srcN = np.copy(src_image)
img = cv2.resize(srcN, dim, interpolation=cv2.INTER_AREA)
nr = (which_section - 1) // split_columns
nc = (which_section - 1) % split_columns
dst_image[nr * img.shape[0]:(nr + 1) * img.shape[0], nc * img.shape[1]:(nc + 1) * img.shape[1]] = img
return dst_image
def plot_to_image(plt):
plt.savefig('tmp_plt.png')
img = cv2.imread('tmp_plt.png')
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
class LaneFinder(object):
MAX_REUSED_FRAME = 5
def __init__(self, save_original_images, object_detection_func=lambda image: np.zeros_like(image),
camera_calibration_file="./output_images/camera_calibration_pickle.p"):
camera_matrix, distortion = load_camera_calibration(camera_calibration_file)
self.camera_matrix = camera_matrix
self.distortion = distortion
self.save_original_images = save_original_images
self.process_counter = 0
self.last_left_fits = []
self.last_right_fits = []
self.last_left_search_base = None
self.last_right_search_base = None
self.image_shape = None
self.object_detection_func = object_detection_func
def process_image(self, image):
"""
:param image: Image with RGB color channels
:return: new image with all lane line information
"""
if self.image_shape is None:
self.image_shape = image.shape
image_bgr = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
final_image = np.zeros_like(image_bgr)
compose_images(final_image, image_bgr, 2, 2, 1)
if self.save_original_images:
save_image(image_bgr, "./video_images/{}.jpg".format(self.process_counter))
undistored_image = cv2.undistort(image_bgr, self.camera_matrix, self.distortion, None, self.camera_matrix)
threshold_combined = pipeline(undistored_image)
matrix, invent_matrix = calculate_transform_matrices(threshold_combined.shape[1], threshold_combined.shape[0])
perspective_img = perspective_transform(threshold_combined, matrix)
binary_warped = perspective_img
left_fit, right_fit, left_search_base, right_search_base, histogram, out_img = \
self.find_line_with_slide_window(binary_warped, self.last_left_search_base, self.last_right_search_base)
self.last_left_search_base = left_search_base
self.last_right_search_base = right_search_base
left_fit, right_fit = self._compare_and_get_best_fit(left_fit, right_fit)
# Generate x and y values for plotting
ploty = np.linspace(0, binary_warped.shape[0] - 1, binary_warped.shape[0])
left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2]
right_fitx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2]
histogram_graph = self._add_history(out_img, histogram, ploty, left_fitx, right_fitx)
compose_images(final_image, histogram_graph, 2, 2, 2)
color_warp = self.apply_fit_to_road(binary_warped, ploty, left_fitx, right_fitx)
left_curverad, right_curverad, center_distance = self._calculate_radius(ploty, left_fit, right_fit, left_fitx, right_fitx)
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = inversion_perspective_transform(color_warp, invent_matrix)
object_detect_mask = np.zeros_like(undistored_image)
object_detect_image = self.object_detection_func(undistored_image)
object_detect_image_masked = cv2.addWeighted(object_detect_image, 1, object_detect_mask, 0.4, 0)
# Combine the result with the original image
result = cv2.addWeighted(object_detect_image, 1, newwarp, 0.5, 0)
compose_images(final_image, result, 2, 2, 3)
compose_images(final_image, object_detect_image_masked, 2, 2, 4)
self._print_text(final_image, self.process_counter, left_curverad, right_curverad, center_distance)
self.process_counter += 1
return cv2.cvtColor(final_image, cv2.COLOR_BGR2RGB)
@staticmethod
def find_line_with_slide_window(binary_warped, leftx_base=None, rightx_base=None):
# Assuming you have created a warped binary image called "binary_warped"
# Take a histogram of the bottom half of the image
histogram = np.sum(binary_warped[binary_warped.shape[0] // 2:, :], axis=0)
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped)) * 255
# Find the peak of the left and right halves of the histogram
# These will be the starting point for the left and right lines
leftx_base, rightx_base = LaneFinder._line_search_base_position(
histogram, leftx_base, rightx_base, peak_detect_offset=120)
# Choose the number of sliding windows
nwindows = 9
# Set height of windows
window_height = np.int(binary_warped.shape[0] / nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated for each window
leftx_current = leftx_base
rightx_current = rightx_base
# Set the width of the windows +/- margin
margin = 100
# Set minimum number of pixels found to recenter window
minpix = 50
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window + 1) * window_height
win_y_high = binary_warped.shape[0] - window * window_height
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
rectangle_color = (0, 0, 250)
cv2.rectangle(out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high), rectangle_color, 2)
cv2.rectangle(out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high), rectangle_color, 2)
# Identify the nonzero pixels in x and y within the window
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (
nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (
nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
# Fit a second order polynomial to each
left_fit = np.polyfit(lefty, leftx, 2)
right_fit = np.polyfit(righty, rightx, 2)
out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0]
out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255]
return left_fit, right_fit, leftx_base, rightx_base, histogram, out_img
@staticmethod
def _line_search_base_position(histogram,
last_know_leftx_base=None, last_know_rightx_base=None, peak_detect_offset=80):
if last_know_leftx_base is None or last_know_rightx_base is None:
midpoint = np.int(histogram.shape[0] // 2)
leftx_base = np.argmax(histogram[:midpoint])
rightx_base = np.argmax(histogram[midpoint:]) + midpoint
else:
left_start, left_end, right_start, right_end = LaneFinder._range(
len(histogram), last_know_leftx_base, last_know_rightx_base, peak_detect_offset)
leftx_base = np.argmax(histogram[left_start:left_end]) + left_start
rightx_base = np.argmax(histogram[right_start:right_end]) + right_start
return leftx_base, rightx_base
@staticmethod
def _range(length, left, right, offset):
left_start = left - offset
if left_start < 0:
left_start = 0
left_end = left + offset + 1
if left_end >= length:
left_end = length - 1
right_start = right - offset
if right_start < 0:
right_start = 0
right_end = right + offset + 1
if right_end >= length:
right_end = length - 1
return left_start, left_end, right_start, right_end
def _calculate_radius(self, ploty, left_fit, right_fit, leftx, rightx):
y_eval = np.max(ploty)
left_curverad = ((1 + (2 * left_fit[0] * y_eval + left_fit[1]) ** 2) ** 1.5) / np.absolute(2 * left_fit[0])
right_curverad = ((1 + (2 * right_fit[0] * y_eval + right_fit[1]) ** 2) ** 1.5) / np.absolute(2 * right_fit[0])
# Define conversions in x and y from pixels space to meters
ym_per_pix = 30 / 720 # meters per pixel in y dimension
xm_per_pix = 3.7 / 700 # meters per pixel in x dimension
# Fit new polynomials to x,y in world space
left_fit_cr = np.polyfit(ploty * ym_per_pix, leftx * xm_per_pix, 2)
right_fit_cr = np.polyfit(ploty * ym_per_pix, rightx * xm_per_pix, 2)
# Calculate the new radii of curvature
left_curverad_real = ((1 + (2 * left_fit_cr[0] * y_eval * ym_per_pix + left_fit_cr[1]) ** 2) ** 1.5) / np.absolute(
2 * left_fit_cr[0])
right_curverad_real = ((1 + (2 * right_fit_cr[0] * y_eval * ym_per_pix + right_fit_cr[1]) ** 2) ** 1.5) / np.absolute(
2 * right_fit_cr[0])
# Now our radius of curvature is in meters
width = self.image_shape[1]
height = self.image_shape[0]
left = left_fit[0] * height ** 2 + left_fit[1] * height + left_fit[2]
right = right_fit[0] * height ** 2 + right_fit[1] * height + right_fit[2]
center_point = (left + right) / 2
center_distance = (width / 2 - center_point) * xm_per_pix
return left_curverad_real, right_curverad_real, center_distance
def _print_text(self, final_image, image_index, left_curverad, right_curverad, center_distance):
width = final_image.shape[1]
height = final_image.shape[0]
cv2.putText(final_image, "Image Index: {}".format(image_index),
(int(width / 2) + 40, int(height / 2) + 0 * 40 + 60), cv2.FONT_HERSHEY_SIMPLEX, 1, [255, 255, 255], 2)
cv2.putText(final_image, "Center Distance: {:6.2f} m".format(center_distance),
(int(width / 2) + 40, int(height / 2) + 1 * 40 + 60), cv2.FONT_HERSHEY_SIMPLEX, 1, [255, 255, 255],
2)
cv2.putText(final_image, "Left Line Curve: {:6.2f} m".format(left_curverad),
(int(width / 2) + 40, int(height / 2) + 2 * 40 + 60), cv2.FONT_HERSHEY_SIMPLEX, 1, [255, 255, 255],
2)
cv2.putText(final_image, "Right Line Curve: {:6.2f} m".format(right_curverad),
(int(width / 2) + 40, int(height / 2) + 3 * 40 + 60), cv2.FONT_HERSHEY_SIMPLEX, 1, [255, 255, 255],
2)
def _add_history(self, out_img, histogram, ploty, left_fitx, right_fitx):
plt.figure()
plt.imshow(cv2.cvtColor(out_img, cv2.COLOR_BGR2RGB), cmap=None)
plt.plot(720 - histogram, color='white', linewidth=3.0)
plt.plot(left_fitx, ploty, color='yellow', linewidth=2.0)
plt.plot(right_fitx, ploty, color='yellow', linewidth=2.0)
plt.xlim(0, 1280)
plt.ylim(720, 0)
plt.tight_layout(pad=0)
return plot_to_image(plt)
def _compare_and_get_best_fit(self, new_left_fit, new_right_fit):
"""
LandFinder class will save last 5 "normal" fit, they new_left_fit and new_right_fit will
compare with last normal fit, if they didn't off the center too much, we think the new fit
is "normal" and system will allow to use it to following process, otherwise new fit will discard
and last know "normal" fit will used for current frame.
Only 5 frames maximum allocated to replace the new fit, if 5 frames still consider as "abnormal"
this "abnormal" fit will still been used.
:param new_left_fit:
:param new_right_fit:
:return:
"""
if self._is_normal_fit(new_left_fit, new_right_fit):
self.last_left_fits.append(new_left_fit)
self.last_right_fits.append(new_right_fit)
if len(self.last_left_fits) > self.MAX_REUSED_FRAME:
self._drop_oldest_cached_fits()
return new_left_fit, new_right_fit
else:
self._drop_oldest_cached_fits()
left, right = self._recent_fits()
print("fit abnormal, dropped. cached left{} cached right{} new left:{} new right:{}".format(
left, right, new_left_fit, new_right_fit
))
if left is None:
print("Cache Fit exhausted, accepting new fit")
return new_left_fit, new_right_fit
return left, right
def _drop_oldest_cached_fits(self):
self.last_left_fits.pop(0)
self.last_right_fits.pop(0)
def _is_normal_fit(self, left_fit, right_fit):
last_left_fit, last_right_fit = self._recent_fits()
if last_left_fit is None:
return True # if nothing to compare, we think the new fit if normal
return (last_left_fit[2] - 30 < left_fit[2] < last_left_fit[2] + 30) and \
(last_right_fit[2] - 30 < right_fit[2] < last_right_fit[2] + 30)
def _recent_fits(self):
list_index = len(self.last_left_fits) - 1
if list_index < 0:
return None, None
return self.last_left_fits[list_index], self.last_right_fits[list_index]
def apply_fit_to_road(self, binary_warped, ploty, left_fitx, right_fitx):
warp_zero = np.zeros_like(binary_warped).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))])
pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))])
pts = np.hstack((pts_left, pts_right))
# Draw the lane onto the warped blank image
cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
return color_warp
def remove_mp4_extension(file_name):
return file_name.replace(".mp4", "")
if __name__ == "__main__":
detector = VehicleDetector(img_rows=640, img_cols=960, weights_file="model_segn_small_0p72.h5")
lane_finder = LaneFinder(save_original_images=False, object_detection_func=detector.get_Unet_mask)
video_file = 'project_video.mp4'
# video_file = 'challenge_video.mp4'
clip = VideoFileClip(video_file, audio=False)
t_start = 0
t_end = 0
if t_end > 0.0:
clip = clip.subclip(t_start=t_start, t_end=t_end)
else:
clip = clip.subclip(t_start=t_start)
clip = clip.fl_image(lane_finder.process_image)
clip.write_videofile("{}_output.mp4".format(remove_mp4_extension(video_file)), audio=False)