-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathmodel.py
90 lines (71 loc) · 2.57 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import tensorflow as tf
tf.python.control_flow_ops = tf
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Lambda, ELU
from keras.layers import Convolution2D, MaxPooling2D
from keras.regularizers import l2
from keras import backend as K
K.set_image_dim_ordering('tf')
def nvidia(input_shape, dropout):
model = Sequential()
model.add(Lambda(lambda x: x / 127.5 - 1.,
input_shape=input_shape))
model.add(Convolution2D(24, 5, 5, name='conv_1', subsample=(2, 2)))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Convolution2D(36, 5, 5, name='conv_2', subsample=(2, 2)))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Convolution2D(48, 5, 5, name='conv_3', subsample=(2, 2)))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Convolution2D(64, 3, 3, name='conv_4', subsample=(1, 1)))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Convolution2D(64, 3, 3, name='conv_5', subsample=(1, 1)))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Flatten())
model.add(Dense(100))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Dense(50))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Dense(10))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Dense(1))
return model
def nvidia_with_regularizer(input_shape, dropout):
INIT = 'glorot_uniform'
reg_val = 0.01
model = Sequential()
model.add(Lambda(lambda x: x / 127.5 - 1.,
input_shape=input_shape))
model.add(Convolution2D(24, 5, 5, subsample=(2, 2), border_mode="valid", init=INIT, W_regularizer=l2(reg_val)))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Convolution2D(36, 5, 5, subsample=(2, 2), border_mode="valid", init=INIT))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Convolution2D(48, 5, 5, subsample=(2, 2), border_mode="valid", init=INIT))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Convolution2D(64, 3, 3, subsample=(1, 1), border_mode="valid", init=INIT))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Convolution2D(64, 3, 3, subsample=(1, 1), border_mode="valid", init=INIT))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Flatten())
model.add(Dense(100))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Dense(50))
model.add(ELU())
model.add(Dropout(dropout))
model.add(Dense(10))
model.add(ELU())
model.add(Dense(1))
return model