-
Notifications
You must be signed in to change notification settings - Fork 78
/
Copy pathsubmission.py
103 lines (83 loc) · 2.89 KB
/
submission.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
from __future__ import print_function
import csv
import numpy as np
from model import get_model
from utils import real_to_cdf, preprocess
def load_validation_data():
"""
Load validation data from .npy files.
"""
X = np.load('data/X_validate.npy')
ids = np.load('data/ids_validate.npy')
X = X.astype(np.float32)
X /= 255
return X, ids
def accumulate_study_results(ids, prob):
"""
Accumulate results per study (because one study has many SAX slices),
so the averaged CDF for all slices is returned.
"""
sum_result = {}
cnt_result = {}
size = prob.shape[0]
for i in range(size):
study_id = ids[i]
idx = int(study_id)
if idx not in cnt_result:
cnt_result[idx] = 0.
sum_result[idx] = np.zeros((1, prob.shape[1]), dtype=np.float32)
cnt_result[idx] += 1
sum_result[idx] += prob[i, :]
for i in cnt_result.keys():
sum_result[i][:] /= cnt_result[i]
return sum_result
def submission():
"""
Generate submission file for the trained models.
"""
print('Loading and compiling models...')
model_systole = get_model()
model_diastole = get_model()
print('Loading models weights...')
model_systole.load_weights('weights_systole_best.hdf5')
model_diastole.load_weights('weights_diastole_best.hdf5')
# load val losses to use as sigmas for CDF
with open('val_loss.txt', mode='r') as f:
val_loss_systole = float(f.readline())
val_loss_diastole = float(f.readline())
print('Loading validation data...')
X, ids = load_validation_data()
print('Pre-processing images...')
X = preprocess(X)
batch_size = 32
print('Predicting on validation data...')
pred_systole = model_systole.predict(X, batch_size=batch_size, verbose=1)
pred_diastole = model_diastole.predict(X, batch_size=batch_size, verbose=1)
# real predictions to CDF
cdf_pred_systole = real_to_cdf(pred_systole, val_loss_systole)
cdf_pred_diastole = real_to_cdf(pred_diastole, val_loss_diastole)
print('Accumulating results...')
sub_systole = accumulate_study_results(ids, cdf_pred_systole)
sub_diastole = accumulate_study_results(ids, cdf_pred_diastole)
# write to submission file
print('Writing submission to file...')
fi = csv.reader(open('data/sample_submission_validate.csv'))
f = open('submission.csv', 'w')
fo = csv.writer(f, lineterminator='\n')
fo.writerow(fi.next())
for line in fi:
idx = line[0]
key, target = idx.split('_')
key = int(key)
out = [idx]
if key in sub_systole:
if target == 'Diastole':
out.extend(list(sub_diastole[key][0]))
else:
out.extend(list(sub_systole[key][0]))
else:
print('Miss {0}'.format(idx))
fo.writerow(out)
f.close()
print('Done.')
submission()