-
Notifications
You must be signed in to change notification settings - Fork 75
/
finetune-unet.py
452 lines (378 loc) · 18.7 KB
/
finetune-unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import argparse
import hashlib
import itertools
import math
import os
import random
from pathlib import Path
from typing import Optional
from einops import rearrange
from collections import OrderedDict
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
import torch.nn as nn
import numpy as np
import cv2
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel
from diffusers.optimization import get_scheduler
from huggingface_hub import HfFolder, Repository, whoami
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTokenizer, CLIPProcessor, CLIPVisionModel
from torch.utils.tensorboard import SummaryWriter
logger = get_logger(__name__)
from utils.parse_args import parse_args
from datasets.dreampose_dataset import DreamPoseDataset
from pipelines.dual_encoder_pipeline import StableDiffusionImg2ImgPipeline
from models.unet_dual_encoder import get_unet, Embedding_Adapter
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
if token is None:
token = HfFolder.get_token()
if organization is None:
username = whoami(token)["name"]
return f"{username}/{model_id}"
else:
return f"{organization}/{model_id}"
def main(args):
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with="tensorboard",
logging_dir=logging_dir,
)
# Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
# This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
# TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
raise ValueError(
"Gradient accumulation is not supported when training the text encoder in distributed training. "
"Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
)
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
if args.hub_model_id is None:
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
else:
repo_name = args.hub_model_id
repo = Repository(args.output_dir, clone_from=repo_name)
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load CLIP Image Encoder
clip_encoder = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32").cuda()
clip_encoder.requires_grad_(False)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# Load models and create wrapper for stable diffusion
vae = AutoencoderKL.from_pretrained(
"CompVis/stable-diffusion-v1-4",
subfolder="vae",
revision="ebb811dd71cdc38a204ecbdd6ac5d580f529fd8c"
)
# Load pretrained UNet layers
unet = get_unet(args.pretrained_model_name_or_path, args.revision, resolution=args.resolution)
if args.custom_chkpt is not None:
print("Loading ", args.custom_chkpt)
unet_state_dict = torch.load(args.custom_chkpt)
new_state_dict = OrderedDict()
for k, v in unet_state_dict.items():
name = k[7:] if k[:7] == 'module' else k
new_state_dict[name] = v
unet.load_state_dict(new_state_dict)
unet = unet.cuda()
# Embedding adapter
adapter = Embedding_Adapter(input_nc=1280, output_nc=1280)
if args.custom_chkpt is not None:
adapter_chkpt = args.custom_chkpt.replace('unet_epoch', 'adapter')
print("Loading ", adapter_chkpt)
adapter_state_dict = torch.load(adapter_chkpt)
new_state_dict = OrderedDict()
for k, v in adapter_state_dict.items():
name = k[7:] if k[:7] == 'module' else k
new_state_dict[name] = v
adapter.load_state_dict(new_state_dict)
adapter = adapter.cuda()
#adapter.requires_grad_(True)
vae.requires_grad_(False)
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
adapter.enable_gradient_checkpointing()
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
params_to_optimize = (
itertools.chain(unet.parameters(), adapter.parameters(),)
)
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
noise_scheduler = DDPMScheduler.from_config(args.pretrained_model_name_or_path, subfolder="scheduler")
# Load the tokenizer
if args.tokenizer_name:
tokenizer = CLIPTokenizer.from_pretrained(
args.tokenizer_name,
revision=args.revision,
)
elif args.pretrained_model_name_or_path:
tokenizer = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
train_dataset = DreamPoseDataset(
instance_data_root=args.instance_data_dir,
class_data_root=args.class_data_dir if args.with_prior_preservation else None,
class_prompt=args.class_prompt,
size=args.resolution,
center_crop=args.center_crop,
)
def collate_fn(examples):
frame_i = [example["frame_i"] for example in examples]
frame_j = [example["frame_i"] for example in examples]
poses = [example["pose_j"] for example in examples]
# Concat class and instance examples for prior preservation.
# We do this to avoid doing two forward passes.
if args.with_prior_preservation:
input_ids += [example["class_prompt_ids"] for example in examples]
frame_i += [example["class_frame_i"] for example in examples]
frame_j += [example["class_frame_j"] for example in examples]
poses += [example["class_pose_j"] for example in examples]
frame_i = torch.stack(frame_i, 0)
frame_j = torch.stack(frame_j, 0)
poses = torch.stack(poses, 0)
# Dropout
p = random.random()
if p <= args.dropout_rate / 3: # dropout pose
poses = torch.zeros(poses.shape)
elif p <= 2*args.dropout_rate / 3: # dropout image
frame_i = torch.zeros(frame_i.shape)
elif p <= args.dropout_rate: # dropout image and pose
poses = torch.zeros(poses.shape)
frame_i = torch.zeros(frame_i.shape)
frame_i = frame_i.to(memory_format=torch.contiguous_format).float()
frame_j = frame_j.to(memory_format=torch.contiguous_format).float()
poses = poses.to(memory_format=torch.contiguous_format).float()
batch = {
"frame_i": frame_i,
"frame_j": frame_j,
"poses": poses,
}
return batch
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.train_batch_size, shuffle=True, collate_fn=collate_fn, num_workers=1
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
if args.train_text_encoder:
unet, adapter, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, adapter, optimizer, train_dataloader, lr_scheduler
)
else:
unet, adapter, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, adapter, optimizer, train_dataloader, lr_scheduler
)
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move text_encode and vae to gpu.
# For mixed precision training we cast the image_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
vae.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
global_step = 0
def latents2img(latents):
latents = 1 / 0.18215 * latents
images = vae.decode(latents).sample
images = (images / 2 + 0.5).clamp(0, 1)
images = images.detach().cpu().numpy()
images = (images * 255).round().astype("uint8")
return images
def inputs2img(input):
target_images = (input / 2 + 0.5).clamp(0, 1)
target_images = target_images.detach().cpu().numpy()
target_images = (target_images * 255).round().astype("uint8")
return target_images
def visualize_dp(im, dp):
im = im.transpose((1,2,0))
hsv = np.zeros(im.shape, dtype=np.uint8)
hsv[..., 1] = 255
dp = dp.cpu().detach().numpy()
mag, ang = cv2.cartToPolar(dp[0], dp[1])
hsv[..., 0] = ang * 180 / np.pi / 2
hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX)
bgr = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
bgr = bgr.transpose((2,0,1))
return bgr
latest_chkpt_step = 0
for epoch in range(args.epoch, args.num_train_epochs):
unet.train()
adapter.train()
first_batch = True
for step, batch in enumerate(train_dataloader):
if first_batch and latest_chkpt_step is not None:
#os.system(f"python test_img2img.py --step {latest_chkpt_step} --strength 0.8")
first_batch = False
with accelerator.accumulate(unet):
# Convert images to latent space
latents = vae.encode(batch["frame_j"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Concatenate pose with noise
_, _, h, w = noisy_latents.shape
noisy_latents = torch.cat((noisy_latents, F.interpolate(batch['poses'], (h,w))), 1)
# Get CLIP embeddings
inputs = clip_processor(images=list(batch['frame_i'].to(latents.device)), return_tensors="pt")
inputs = {k: v.to(latents.device) for k, v in inputs.items()}
clip_hidden_states = clip_encoder(**inputs).last_hidden_state.to(latents.device)
# Get VAE embeddings
image = batch['frame_i'].to(device=latents.device, dtype=weight_dtype)
vae_hidden_states = vae.encode(image).latent_dist.sample() * 0.18215
encoder_hidden_states = adapter(clip_hidden_states, vae_hidden_states)
# Predict the noise residual
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
if args.with_prior_preservation:
# Chunk the noise and model_pred into two parts and compute the loss on each part separately.
model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
target, target_prior = torch.chunk(target, 2, dim=0)
# Compute instance loss
loss = F.mse_loss(model_pred.float(), target.float(), reduction="none").mean([1, 2, 3]).mean()
# Compute prior loss
prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
# Add the prior loss to the instance loss.
loss = loss + args.prior_loss_weight * prior_loss
else:
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (
itertools.chain(unet.parameters())
)
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
# save model
if accelerator.is_main_process and global_step % 500 == 0:
pipeline = StableDiffusionImg2ImgPipeline.from_pretrained(
args.pretrained_model_name_or_path,
#adapter=accelerator.unwrap_model(adapter),
unet=accelerator.unwrap_model(unet),
tokenizer=tokenizer,
image_encoder=accelerator.unwrap_model(clip_encoder),
clip_processor=accelerator.unwrap_model(clip_processor),
revision=args.revision,
)
pipeline.save_pretrained(os.path.join(args.output_dir, f'checkpoint-{epoch}'))
model_path = args.output_dir+f'/unet_epoch_{epoch}.pth'
torch.save(unet.state_dict(), model_path)
adapter_path = args.output_dir+f'/adapter_{epoch}.pth'
torch.save(adapter.state_dict(), adapter_path)
accelerator.wait_for_everyone()
# save model
if accelerator.is_main_process and global_step % 500 == 0:
pipeline = StableDiffusionImg2ImgPipeline.from_pretrained(
args.pretrained_model_name_or_path,
#adapter=accelerator.unwrap_model(adapter),
unet=accelerator.unwrap_model(unet),
tokenizer=tokenizer,
image_encoder=accelerator.unwrap_model(clip_encoder),
clip_processor=accelerator.unwrap_model(clip_processor),
revision=args.revision,
)
pipeline.save_pretrained(os.path.join(args.output_dir, f'checkpoint-{epoch}'))
model_path = args.output_dir+f'/unet_epoch_{epoch}.pth'
torch.save(unet.state_dict(), model_path)
adapter_path = args.output_dir+f'/adapter_{epoch}.pth'
torch.save(adapter.state_dict(), adapter_path)
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)