-
Notifications
You must be signed in to change notification settings - Fork 0
/
helper_plot.R
373 lines (292 loc) · 11 KB
/
helper_plot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
###'######################################################################
###'
###' Helper functions for plotting
###'
###'
###' 20180726 JoonHo Lee
###'
###'
### Package dependency
library(tidyverse)
library(scales)
###'######################################################################
###'
###' Common settings for theme and temporary labels
###'
###'
### Theme settings
theme_trend <-
theme_bw() +
theme(panel.background = element_blank(),
panel.grid = element_blank(),
legend.position = "bottom",
legend.direction = "horizontal",
legend.title = element_blank())
### Temporary labels
temp_labels <- labs(title = "Enter title here",
subtitle = "Enter subtitle here",
caption = "Enter caption here",
y = "Enter ylabel here",
x = "Enter xlabel here")
### Define manual palettes
color_palette <- c("firebrick1", "dodgerblue1", "forestgreen", "darkorchid1", "darkgoldenrod1",
"blue", "green", "purple", "gold", "red")
shape_palette <- c(16, 17, 15, 18, 1, 2, 0, 5, 6, 4, 3, 8, 10, 7, 9)
###'######################################################################
###'
###' (1) plot_trend_xy()
###' - with only x-y variables
###' - No groups
###' - No facets
###'
### Define function
plot_trend_xy <- function(dataframe,
x,
y,
yline = NULL,
ylim = NULL,
xinterval = 1){
###' Enquote x-y variables
###' Renamed variables because scale::comma() didn't work with !!yvar
xvar <- enquo(x)
yvar <- enquo(y)
dataframe <- dataframe %>%
rename(xvar = !!xvar, yvar = !!yvar)
### Assign data and aesthetic mappings
p <- ggplot(dataframe) +
aes(x = xvar, y = yvar)
###' Add point, path, and value label layers
p <- p + geom_point(size = 3.0) +
geom_path(size = 1.0) +
geom_text(aes(label = comma(yvar)), size = 3, hjust = 0.5, vjust = 2.0)
### Add vertical line layer
if (!is.null(yline)){
p <- p + geom_vline(aes(xintercept = yline), color = "red", linetype = "dashed")
}
### Scales
p <- p +
scale_x_continuous(breaks = seq(min(dataframe$xvar), max(dataframe$xvar),
by = xinterval)) +
scale_y_continuous(labels = comma, limits = ylim)
### Themes and temporary labels
p + theme_trend + temp_labels
}
# ### Test the code
# plot_trend_xy(df_plot, Fiscalyear, mean_value)
###'######################################################################
###'
###' (2) plot_trend_grp()
###' - x-y variables
###' - With one group (factor)
###' - No facets
###'
### Define function 'plot_trend_grp'
plot_trend_grp <- function(dataframe,
x,
y,
group,
yline = NULL,
ylim = NULL,
xinterval = 1){
###' Enquote x, y, and group variables
###' Renamed variables because scale::comma() didn't work with !!yvar
xvar <- enquo(x)
yvar <- enquo(y)
groupvar <- enquo(group)
dataframe <- dataframe %>%
rename(xvar = !!xvar, yvar = !!yvar, groupvar = !!groupvar)
### Assign data and aesthetic mappings
p <- ggplot(dataframe) +
aes(x = xvar, y = yvar, group = groupvar)
###' Add point, path, and value label layers
p <- p + geom_point(aes(shape = groupvar, color = groupvar), size = 3.0) +
geom_path(aes(linetype = groupvar, color = groupvar), size = 1.0) +
geom_text(aes(label = comma(yvar)), size = 3, hjust = 0.5, vjust = 2.0)
### Add vertical line layer
if (!is.null(yline)){
p <- p + geom_vline(aes(xintercept = yline), color = "red", linetype = "dashed")
}
### Scales
p <- p +
scale_x_continuous(breaks = seq(min(dataframe$xvar), max(dataframe$xvar),
by = xinterval)) +
scale_y_continuous(labels = comma, limits = ylim)
### Themes, temporary labels, and manual colors
p + theme_trend + temp_labels +
scale_color_manual(values = color_palette[seq(unique(dataframe$groupvar))]) +
scale_shape_manual(values = shape_palette[seq(unique(dataframe$groupvar))])
}
# ### Test the code
# plot_trend_grp(df_plot, Fiscalyear, mean_value, key, ylim = c(8000, 18000))
###'######################################################################
###'
###' (3) plot_trend_grp_facet()
###' - x-y variables
###' - With one group (factor)
###' - With facet_grid()
###'
### Define function 'plot_trend_0fac'
plot_trend_grp_facet <- function(dataframe,
x,
y,
group,
facet_formula,
facet_scales = "fixed",
yline = NULL,
ylim = NULL,
xinterval = 1){
###' Enquote x, y, and group variables
###' Renamed variables because scale::comma() didn't work with !!yvar
xvar <- enquo(x)
yvar <- enquo(y)
groupvar <- enquo(group)
dataframe <- dataframe %>%
rename(xvar = !!xvar, yvar = !!yvar, groupvar = !!groupvar)
### Assign data and aesthetic mappings
p <- ggplot(dataframe) +
aes(x = xvar, y = yvar, group = groupvar)
###' Add point, path, and value label layers
p <- p + geom_point(aes(shape = groupvar, color = groupvar), size = 3.0) +
geom_path(aes(linetype = groupvar, color = groupvar), size = 1.0) +
geom_text(aes(label = comma(yvar)), size = 3, hjust = 0.5, vjust = 2.0)
### Add vertical line layer
if (!is.null(yline)){
p <- p + geom_vline(aes(xintercept = yline), color = "red", linetype = "dashed")
}
### Facetting
p <- p + facet_grid(facet_formula, scales = facet_scales)
### Scales
p <- p +
scale_x_continuous(breaks = seq(min(dataframe$xvar), max(dataframe$xvar),
by = xinterval)) +
scale_y_continuous(labels = comma, limits = ylim)
### Themes, temporary labels, and manual colors
p + theme_trend + temp_labels +
scale_color_manual(values = color_palette[seq(unique(dataframe$groupvar))]) +
scale_shape_manual(values = shape_palette[seq(unique(dataframe$groupvar))])
}
# ### Test the code
# plot_trend_grp_facet(df_plot, Fiscalyear, mean_value, key,
# Dtype~., ylim = c(8000, 18000))
#
# plot_trend_grp_facet(df_plot, Fiscalyear, mean_value, Dtype,
# key~., "free_y")
###'######################################################################
###'
###' Calculate the y-limits and height for the PDF file
###'
###'
auto_ylim <- function(value_vec = NULL, tweak = 5){
### The optimal y-limits
bottom <- min(value_vec) - (min(value_vec) - 0)/tweak
ceiling <- max(value_vec) + (min(value_vec) - 0)/tweak
### Return objects
auto_ylim <- c(bottom, ceiling)
return(auto_ylim)
}
auto_height <- function(factor_vec = NULL, tweak = 3){
### The height for the PDF file
num_factor <- length(levels(factor_vec))
height <- ifelse(num_factor <= 4, 6, num_factor + tweak)
### Return objects
return(height)
}
###'######################################################################
###'
###' plot_proportions_grp()
###'
###' - x-y variables
###' - With one group (factor)
###' - No facets
###'
### Define function
plot_proportions_grp <- function(dataframe,
x,
y,
group,
yline = NULL,
ylim = NULL,
xinterval = 1){
###' Enquote x, y, and group variables
###' Renamed variables because scale::comma() didn't work with !!yvar
xvar <- enquo(x)
yvar <- enquo(y)
groupvar <- enquo(group)
dataframe <- dataframe %>%
rename(xvar = !!xvar, yvar = !!yvar, groupvar = !!groupvar)
#' (1) Calculate the percentages based on groups
#' (2) Format the labels and calculate their positions
dataframe <- dataframe %>%
group_by(xvar) %>%
mutate(group_sum = sum(yvar, na.rm = TRUE),
percent = yvar/group_sum * 100,
# don't need to calculate the label positions from ggplot 2.1.0
# position = cumsum(amount) - 0.5 * amount,
label_text = paste0(sprintf("%.1f", percent), "%"))
### Calcluate the group total
group_total <- dataframe %>%
group_by(xvar) %>%
summarise(group_sum = first(group_sum))
### Assign data and aesthetic mappings
p <- ggplot(dataframe) +
aes(x = xvar, y = yvar, fill = groupvar)
###' Add bar, percent label, and total value label layers
p <- p +
geom_bar(position = position_stack(reverse = TRUE),
stat = "identity", width = 0.7) +
geom_text(aes(label = label_text),
position = position_stack(vjust = 0.5, reverse = TRUE), size = 3) +
geom_text(data = group_total,
aes(x = xvar, y = group_sum + mean(dataframe$group_sum)/30,
label = comma(group_sum), fill = NULL),
size = 3)
### Add vertical line layer
if (!is.null(yline)){
p <- p + geom_vline(aes(xintercept = yline), color = "red", linetype = "dashed")
}
### Scales
p <- p +
scale_x_continuous(breaks = seq(min(dataframe$xvar), max(dataframe$xvar),
by = xinterval)) +
scale_y_continuous(labels = comma, limits = ylim)
### Themes, temporary labels, and manual colors
p <- p + theme_trend + temp_labels +
scale_color_manual(values = color_palette[seq(unique(dataframe$groupvar))]) +
scale_shape_manual(values = shape_palette[seq(unique(dataframe$groupvar))])
### Guide (nrow = 2) and Paired pallette
p + guides(fill = guide_legend(nrow = 2, byrow = TRUE)) +
scale_fill_brewer(palette = "Paired")
}
# ### Test the code
# plot_trend_grp(df_plot, Fiscalyear, mean_value, key, ylim = c(8000, 18000))
###'######################################################################
###'
###' tabdf_plot(): The visualized version of tabulating frequencies
###'
###' Similar to the Stata command "tab" & "histogram"
###'
###'
tabdf_plot <- function(df,
variable,
statistic = Percent,
limits = NULL){
### Enquote variables
x <- enquo(variable)
y <- enquo(statistic)
### Generate table
tibble_tbl <- df %>%
group_by(!!x) %>%
summarise(Freq = n()) %>%
ungroup() %>%
mutate(total_n = sum(Freq, na.rm = TRUE),
Percent = round((Freq/total_n)*100, 1),
CumFreq = cumsum(Freq),
CumPercent = round((CumFreq/total_n)*100, 1)) %>%
select(-total_n)
### Generate ggplot
p <- ggplot(data = tibble_tbl, aes(x = !!x, y = !!y)) +
geom_bar(stat = "identity") +
scale_x_continuous(limits = limits) +
theme_bw()
return(p)
}