forked from Kaggle/docker-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Dockerfile
100 lines (89 loc) · 4.63 KB
/
Dockerfile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
FROM nvidia/cuda:10.0-cudnn7-devel-ubuntu16.04 AS nvidia
FROM continuumio/anaconda3:2019.03
# Avoid interactive configuration prompts/dialogs during apt-get.
ENV DEBIAN_FRONTEND=noninteractive
# This is necessary to for apt to access HTTPS sources
RUN apt-get update && \
apt-get install apt-transport-https
# Cuda support
COPY --from=nvidia /etc/apt/sources.list.d/cuda.list /etc/apt/sources.list.d/
COPY --from=nvidia /etc/apt/sources.list.d/nvidia-ml.list /etc/apt/sources.list.d/
COPY --from=nvidia /etc/apt/trusted.gpg /etc/apt/trusted.gpg.d/cuda.gpg
# Ensure the cuda libraries are compatible with the GPU image.
# TODO(b/120050292): Use templating to keep in sync.
ENV CUDA_VERSION=10.0.130
ENV CUDA_PKG_VERSION=10-0=$CUDA_VERSION-1
LABEL com.nvidia.volumes.needed="nvidia_driver"
LABEL com.nvidia.cuda.version="${CUDA_VERSION}"
ENV PATH=/usr/local/nvidia/bin:/usr/local/cuda/bin:${PATH}
# The stub is useful to us both for built-time linking and run-time linking, on CPU-only systems.
# When intended to be used with actual GPUs, make sure to (besides providing access to the host
# CUDA user libraries, either manually or through the use of nvidia-docker) exclude them. One
# convenient way to do so is to obscure its contents by a bind mount:
# docker run .... -v /non-existing-directory:/usr/local/cuda/lib64/stubs:ro ...
ENV LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/usr/local/nvidia/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64/stubs"
ENV NVIDIA_VISIBLE_DEVICES=all
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
ENV NVIDIA_REQUIRE_CUDA="cuda>=10.0"
RUN apt-get update && apt-get install -y --no-install-recommends \
cuda-cupti-$CUDA_PKG_VERSION \
cuda-cudart-$CUDA_PKG_VERSION \
cuda-cudart-dev-$CUDA_PKG_VERSION \
cuda-libraries-$CUDA_PKG_VERSION \
cuda-libraries-dev-$CUDA_PKG_VERSION \
cuda-nvml-dev-$CUDA_PKG_VERSION \
cuda-minimal-build-$CUDA_PKG_VERSION \
cuda-command-line-tools-$CUDA_PKG_VERSION \
libcudnn7=7.5.0.56-1+cuda10.0 \
libcudnn7-dev=7.5.0.56-1+cuda10.0 \
libnccl2=2.4.2-1+cuda10.0 \
libnccl-dev=2.4.2-1+cuda10.0 && \
ln -s /usr/local/cuda-10.0 /usr/local/cuda && \
ln -s /usr/local/cuda/lib64/stubs/libcuda.so /usr/local/cuda/lib64/stubs/libcuda.so.1
# Work to upgrade to Python 3.7 can be found on this branch: https://github.com/Kaggle/docker-python/blob/upgrade-py37/Dockerfile
RUN conda install -y python=3.6.6 && pip install --upgrade pip && pip install numpy
# The tested build configurations for Tensorflow 1.14 uses Bazel 0.24.1: https://www.tensorflow.org/install/source#tested_build_configurations
ENV BAZEL_VERSION=0.27.1
RUN apt-get install -y gnupg zip openjdk-8-jdk && \
apt-get install -y --no-install-recommends \
bash-completion \
zlib1g-dev && \
wget --no-verbose "https://github.com/bazelbuild/bazel/releases/download/${BAZEL_VERSION}/bazel_${BAZEL_VERSION}-linux-x86_64.deb" && \
dpkg -i bazel_*.deb && \
rm bazel_*.deb
# Fetch tensorflow & install dependencies.
RUN cd /usr/local/src && \
git clone https://github.com/tensorflow/tensorflow && \
cd tensorflow && \
git checkout tags/v2.1.0-rc0 && \
pip install keras_applications --no-deps && \
pip install keras_preprocessing --no-deps
# Create a tensorflow wheel for CPU
RUN cd /usr/local/src/tensorflow && \
cat /dev/null | ./configure && \
bazel build --config=opt --config=v2 //tensorflow/tools/pip_package:build_pip_package && \
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_cpu && \
bazel clean
# Create a tensorflow wheel for GPU/cuda
ENV TF_NEED_CUDA=1
ENV TF_CUDA_VERSION=10.0
# 3.7 is for the K80 and 6.0 is for the P100, 7.5 is for the T4: https://developer.nvidia.com/cuda-gpus
ENV TF_CUDA_COMPUTE_CAPABILITIES=3.7,6.0,7.5
ENV TF_CUDNN_VERSION=7
ENV TF_NCCL_VERSION=2
ENV NCCL_INSTALL_PATH=/usr/
RUN cd /usr/local/src/tensorflow && \
# TF_NCCL_INSTALL_PATH is used for both libnccl.so.2 and libnccl.h. Make sure they are both accessible from the same directory.
ln -s /usr/lib/x86_64-linux-gnu/libnccl.so.2 /usr/lib/ && \
cat /dev/null | ./configure && \
echo "/usr/local/cuda-${TF_CUDA_VERSION}/targets/x86_64-linux/lib/stubs" > /etc/ld.so.conf.d/cuda-stubs.conf && ldconfig && \
bazel build --config=opt \
--config=v2 \
--config=cuda \
--cxxopt="-D_GLIBCXX_USE_CXX11_ABI=0" \
//tensorflow/tools/pip_package:build_pip_package && \
rm /etc/ld.so.conf.d/cuda-stubs.conf && ldconfig && \
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_gpu && \
bazel clean
# Print out the built .whl files
RUN ls -R /tmp/tensorflow*