-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRunPaml_SiteBranch.py
229 lines (160 loc) · 9.15 KB
/
RunPaml_SiteBranch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#!/usr/local/bin/python
#Created on 8/20/13
__author__ = 'Juan Ugalde'
def run_paml_per_group(groups, alignment, tree, output_dir, working_dir):
"""
This function take the group, alignment, tree and folder information and runs a paml analysis
on each defined group.
The steps needed are to modify the tree to add the #1 that defines the branches in the tree for paml
and then runs PAML on that tree, using the provided alignment.
The working dir is important (different from the output dir), because different PAML runs at the same time may
override each other.
This is particularly important if running this script in more than one processor
"""
from Bio import Phylo
from SelectionAnalysis import paml_run
cluster_tree = Phylo.read(tree, "newick") # Read the input tree
#Names have a pipe sign (|) with the organism|protein_id.
#Here I create a dictionary where the key is the protein_id and the value is the organism
clades_in_tree_by_gene_id = {str(clade).split("|")[1]: str(clade).split("|")[0]
for clade in cluster_tree.get_terminals()}
species_in_tree = set(str(clade).split("|")[0] for clade in cluster_tree.get_terminals())
clade_results = dict()
#Iterate on each group
for group in groups:
#Check that all the branches are present on the tree (and is not the only branch)
if set(groups[group]).issubset(species_in_tree) and len(species_in_tree) > len(groups[group]):
dict_new_clade_names = dict()
for gene_id in clades_in_tree_by_gene_id:
genome = clades_in_tree_by_gene_id[gene_id]
if genome in groups[group]:
dict_new_clade_names[genome + "|" + gene_id] = genome + "|" + gene_id + " #1"
else:
continue
#Replace the names in the tree and save the tree
old_tree_information = open(tree).read()
new_tree_information = multiple_replace(dict_new_clade_names, old_tree_information)
group_tree = working_dir + "/" + group + ".tre"
new_tree_file = open(group_tree, 'w')
new_tree_file.write(new_tree_information)
new_tree_file.close()
#Run model for the new tree
paml_results = paml_run.ma_m1a(alignment, group_tree, output_dir, working_dir)
clade_results[group] = paml_results
else:
clade_results[group] = None
return clade_results
def multiple_replace(replace_dict, text):
"""
Replace string based on dictionary. Taken from:
http://stackoverflow.com/questions/15175142/how-can-i-do-multiple-substitutions-using-regex-in-python
"""
import re
#Create the regular expression from the dictionary keys
regex = re.compile("(%s)" % "|".join(map(re.escape, replace_dict.keys())))
#For each match, look-up corresponding value in dictionary
return regex.sub(lambda mo: replace_dict[mo.string[mo.start():mo.end()]], text)
def cluster_analysis(cluster_list, cluster_folder, group_branches, output_folder, temporal_folder, results, no_data, not_found):
"""
Function used to run the analysis on the cluster list. It will run PAML for each group, and then it will
calculate the stats
"""
from SelectionAnalysis import paml_stats
from SelectionAnalysis import paml_prepare
for cluster in cluster_list:
cluster_file = cluster_folder + "/" + cluster + ".fna" # Add fna extension
#Check that the cluster file exists, if not continue
if not os.path.exists(cluster_file):
not_found.append(cluster)
continue
#Make a new tree, no confidence values in the branches
new_tree = paml_prepare.run_fasttree(cluster_file, temporal_folder)
#Make the new alignment, and get information about the alignment
new_alignment_file, number_sequences, alignment_length = paml_prepare.adjust_alignment(cluster_file, temporal_folder)
#Run PAML for each branch in the cluster with both models
paml_site_branch_results = run_paml_per_group(group_branches, new_alignment_file, new_tree,
output_folder, temporal_folder)
for group in paml_site_branch_results:
#Store those clusters and groups that were not analyzed
if paml_site_branch_results[group] is None:
no_data.append([cluster, group])
else:
pvalue = paml_stats.lrt(paml_site_branch_results[group]["Ma"].get("lnL"),
paml_site_branch_results[group]["M1a"].get("lnL"), 1)
proportion_sites = float(paml_site_branch_results[group]["Ma"]["site_classes"][2]["proportion"]) + \
float(paml_site_branch_results[group]["Ma"]["site_classes"][3]["proportion"])
average_omega = (float(paml_site_branch_results[group]["Ma"]["site_classes"][2]["branch types"]["foreground"]) +
float(paml_site_branch_results[group]["Ma"]["site_classes"][3]["branch types"]["foreground"])) / 2
#Store the final results
#Group, Nseqs, Length, p-value, P1 in Ma, Omega in W
results.append([cluster, group, number_sequences, alignment_length,
round(pvalue, 3), proportion_sites, average_omega])
if __name__ == '__main__':
import os
import argparse
from collections import defaultdict
import multiprocessing as mp
from SelectionAnalysis import paml_run, paml_stats
program_description = "Script that takes a list of clusters and runs PAML (codeml). The model used is a branch-site" \
"with relaxed test (MA vs MA with omega fixed at 1). "
parser = argparse.ArgumentParser(description=program_description)
parser.add_argument("-c", "--cluster_list", type=str, help="Cluster file", required=True)
parser.add_argument("-n", "--cluster_folder", type=str, help="Cluster folder", required=True)
parser.add_argument("-g", "--groups", type=str, help="Group constrains", required=True)
parser.add_argument("-o", "--output_directory", type=str, help="Output folder", required=True)
parser.add_argument("-p", "--num_processors", type=int, help="Number of processors to use (Default is 1)", default=1)
parser.add_argument("-f", "--fdr", help="Perform false discovery rate")
args = parser.parse_args()
#Check for the output folder and also create the temporal folder
if not os.path.exists(args.output_directory):
os.makedirs(args.output_directory)
#Read the cluster file and group file
clusters_to_analyze = [line.rsplit()[0] for line in open(args.cluster_list) if line.strip()]
group_constrains = defaultdict(list) # Define the group of branches to analyze
for line in open(args.groups):
if line.strip():
line = line.rstrip()
group_constrains[line.split("\t")[0]].append(line.split("\t")[1])
#Result and output files
manager = mp.Manager()
cluster_paml_results = manager.list([])
groups_no_data = manager.list()
clusters_not_found = manager.list()
##This section needs to be improved (probably the code needs to be rewritten).
#There is an issue that in some cases some of the large or most complicated clusters ended up being all together
##in one chunk.
##I need to reimplement this section in a proper manner, using multiprocessing.pool (for example).
#Run in parallel, split the list
num_proc = args.num_processors
num_chunks = len(clusters_to_analyze) / num_proc
clusters_chunks = [clusters_to_analyze[i:i+num_chunks] for i in range(0, len(clusters_to_analyze), num_chunks)]
jobs = []
i = 1
#Create the jobs to run
for chunk in clusters_chunks:
temporal_folder = args.output_directory + "/temp_" + str(i)
if not os.path.exists(temporal_folder):
os.makedirs(temporal_folder)
i += 1
p = mp.Process(target=cluster_analysis, args=(chunk, args.cluster_folder,
group_constrains, args.output_directory, temporal_folder, cluster_paml_results, groups_no_data, clusters_not_found))
jobs.append(p)
# #Run the jobs
[proc.start() for proc in jobs]
[proc.join() for proc in jobs]
#Print the results
output_file = open(args.output_directory + "/paml_results.txt", 'w')
no_results_file = open(args.output_directory + "/no_results.txt", 'w')
not_found_file = open(args.output_directory + "/clusters_not_present.txt", 'w')
for result in cluster_paml_results:
output_file.write("\t".join(str(x) for x in result) + "\n")
for entry in groups_no_data:
no_results_file.write("\t".join(entry) + "\n")
output_file.close()
no_results_file.close()
#Run False discovery rate analysis, if chosen
if args.fdr:
corrected_pvalue_results = paml_stats.fdr(cluster_paml_results, 4)
corrected_results_file = open(args.output_directory + "/paml_results_corrected.txt", "w")
for result in corrected_pvalue_results:
corrected_results_file.write("\t".join(str(x) for x in result) + "\n")