-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSummarize_OrthoMCL_Results.py
445 lines (316 loc) · 18.1 KB
/
Summarize_OrthoMCL_Results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
#!/usr/local/bin/python
#Created on 8/1/13
__author__ = 'Juan Ugalde'
def get_protein_info(genome_list, fasta_directory):
"""
This function goes into a folder with fasta files (.fasta) of the proteins and get the information for the proteins
in each genome, including the ID and the length of the protein
"""
from Bio import SeqIO
from collections import defaultdict
proteins_in_genomes = defaultdict(list) # output list of the proteins that are present in each genome
protein_length = defaultdict(int) # length of each protein. Assumes a unique ID for each protein
files_read_counter = 0 # Count the number of files being read
fasta_files = [fasta_directory + "/" + fasta + ".fasta" for fasta in genome_list]
for fasta in fasta_files:
for record in SeqIO.parse(fasta, "fasta"):
proteins_in_genomes[record.id.split('|')[0]].append(record.id)
protein_length[record.id] = int(len(record.seq))
files_read_counter += 1
return proteins_in_genomes, protein_length, files_read_counter
def get_orthomcl_results(cluster_file, genome_list):
"""
This function reads the results of the OrthoMCL clustering, and returns a dictionary with the information.
The format is:
ClusterID: protein1 protein2 ....
"""
from collections import defaultdict
orthomcl_results = open(cluster_file, 'r')
cluster_dictionary = defaultdict(list) # Dictionary with the clusters. Stores only the clusters that will be used
unique_proteins_genome_count = defaultdict(int) # Proteins that are not in any cluster
proteins_in_cluster = set() # Proteins in cluster. Needed to search for proteins that are absent
total_cluster_count = 0
removed_clusters = 0
for line in orthomcl_results:
total_cluster_count += 1
line = line.strip('\n')
ids_proteins = line.split(": ")
proteins = ids_proteins[1].split(" ")
clean_protein_list = [] # This is used to remove proteins from genomes not in the list
for genome in genome_list: # Adding the proteins that we need
[clean_protein_list.append(protein) for protein in [x for x in proteins if x.startswith(genome)]]
#Now I need to evaluate those clusters that now are unique and zero
if len(clean_protein_list) == 0:
removed_clusters += 1
continue
if len(clean_protein_list) == 1:
unique_proteins_genome_count[clean_protein_list[0].split("|")[0]] += 1
removed_clusters += 1
continue
for protein in clean_protein_list:
cluster_dictionary[ids_proteins[0]].append(protein)
proteins_in_cluster.add(protein)
return cluster_dictionary, proteins_in_cluster, unique_proteins_genome_count, total_cluster_count, removed_clusters
def read_group_files(group_file):
"""
Reads a file with the group list, and returns a dictionary containing
the name of the group and a list with the genomes that are in that group.
The first column is the prefix of the genome, the second the associated group
"""
from collections import defaultdict
genome_groups = defaultdict(list)
for line in open(group_file, 'r'):
line = line.rstrip()
element = line.split("\t")
genome_groups[element[0]].append(element[1])
return genome_groups
#Here we go into the main calculations
def get_unique_seqs_genome(sequences_in_genomes, total_set_sequences, sequence_lengths, min_length):
"""
This module takes a dictionary with their genome and proteins, and a set of proteins
and look for proteins that are not in the total set
"""
from collections import defaultdict
large_unique_sequences = defaultdict(list)
short_unique_sequences = defaultdict(list)
processed_sequences = 0
for genome in sequences_in_genomes:
for seq_name in sequences_in_genomes[genome]:
processed_sequences += 1
if seq_name in total_set_sequences:
continue
else:
if sequence_lengths[seq_name] > min_length:
large_unique_sequences[genome].append(seq_name)
else:
short_unique_sequences[genome].append(seq_name)
return large_unique_sequences, short_unique_sequences, processed_sequences
def seqs_shared_clusters(cluster_dic, genome_dictionary):
"""
This module takes the cluster dictionary and the genome dictionary and generates outputs which includes:
Clusters that are unique to each genome
Clusters that are shared across all genomes (single and multiple copy)
"""
from collections import defaultdict
unique_clusters = defaultdict(list) # Dictionary with the unique clusters
shared_single_clusters = [] # List with clusters that are shared and single copy
shared_multiple_clusters = [] # List with clusters that are shared and in multiple copies
genomes_in_matrix = sorted(genome_dictionary.keys())
header = ["Cluster_ID"]
header.extend(sorted(genome_dictionary.keys()))
all_clusters_matrix = [header]
for cluster in cluster_dic:
genome_list = [protein.split("|")[0] for protein in cluster_dic[cluster]] # Create a list with the genomes
count = {x: genome_list.count(x) for x in genome_list} # Count the occurences
#Create the matrix
cluster_matrix = [cluster]
for genome in genomes_in_matrix:
if genome in genome_list:
cluster_matrix.append(count[genome])
else:
cluster_matrix.append(0)
#print cluster_matrix
all_clusters_matrix.append(cluster_matrix)
if len(count) == 1:
unique_clusters[genome_list[0]].append(cluster)
elif len(count) == len(genome_dictionary.keys()):
if sum(count.itervalues()) == len(genome_dictionary.keys()):
shared_single_clusters.append(cluster)
else:
shared_multiple_clusters.append(cluster)
return unique_clusters, shared_single_clusters, shared_multiple_clusters, all_clusters_matrix
def clusters_in_groups(clusters, groups):
"""
"""
from collections import defaultdict
import itertools
unique_group_clusters = defaultdict(list) # Count the unique clusters in each group
combination_clusters = defaultdict(list)
#Create inverted dictionary
genome_group_info = defaultdict()
for group in groups:
for genome in groups[group]:
genome_group_info[genome] = group
for cluster in clusters:
group_count = defaultdict(lambda: defaultdict(int))
for protein in clusters[cluster]:
genome_id = protein.split("|")[0]
group_for_genome = genome_group_info[genome_id]
group_count[group_for_genome][genome_id] += 1
##Unique clusters for each group
if len(group_count) == 1:
for group in group_count:
if len(group_count[group]) == len(groups[group]):
unique_group_clusters[group].append(cluster)
else: # I could add something here to count the number of proteins not unique
pass
#Shared, all possible combinations
else:
for combination_count in range(2, len(group_count) + 1):
for group_combinations in itertools.combinations(groups.keys(), combination_count):
# Check that all the genomes in the group are represented
group_check = 0
for i in range(0, len(group_combinations)):
if len(group_count[group_combinations[i]]) == len(groups[group_combinations[i]]):
continue
else:
group_check = 1
if group_check == 0:
combination_clusters[group_combinations].append(cluster)
return unique_group_clusters, combination_clusters
if __name__ == '__main__':
import os
import sys
import argparse
from Common import ClusterTools
#Create the options and program description
program_description = "This script summarize the results of orthoMCL, and create several summary files." \
" The inputs are:" \
"-List of clusters, generated by orthoMCL" \
"-A genome list" \
"-A folder with fasta files" \
"- An optional group file, to group genomes. For example, all genomes from the same species "
parser = argparse.ArgumentParser(description=program_description)
parser.add_argument("-l", "--genome_list_index", type=str,
help="File with the genome list. Format GenomeID, FullName, ShortName", required=True)
parser.add_argument("-c", "--cluster_file", type=str, help="Ortholog file, generated by OrthoMCL", required=True)
parser.add_argument("-f", "--fasta_aa_directory", type=str, help="Directory with the fasta files", required=True)
parser.add_argument("-g", "--group_information", type=str, help="Group file")
parser.add_argument("-o", "--output_directory", type=str, help="Output directory", required=True)
args = parser.parse_args()
#Create the output directory
if not os.path.exists(args.output_directory):
os.makedirs(args.output_directory)
#Create a log file
run_summary = open(args.output_directory + "/logfile.txt", 'w')
#####Read the genome list
genome_id_dictionary, genome_count = ClusterTools.read_genome_list(args.genome_list_index)
run_summary.write("Genomes in the genome list: %d" % genome_count + "\n")
######Read the cluster information, and check that everything is ok
#cluster_information, set_of_proteins_in_clusters, unique_cluster_count, total_clusters, removed_clusters = \
# get_orthomcl_results(args.cluster_file, [i for i in genome_id_dictionary.itervalues()])
cluster_information, set_of_proteins_in_clusters, unique_cluster_count, total_clusters, removed_clusters = \
get_orthomcl_results(args.cluster_file, genome_id_dictionary.keys())
run_summary.write("Total number of clusters: %d" % len(cluster_information) + "\n")
run_summary.write("Total number of protein in clusters: %d" % len(set_of_proteins_in_clusters) + "\n")
run_summary.write("Total number of removed clusters (not present in the genome file): %d" % removed_clusters + "\n")
#Check the counts, to see if everything is going ok
if total_clusters - removed_clusters != len(cluster_information):
sys.exit("The number of removed clusters clusters plus the retained clusters, "
"doesn't match the total of original clusters in the file")
#####Read the fasta file
#dic_protein_in_genomes, dic_protein_length, files_read_counter = \
# get_protein_info([i for i in genome_id_dictionary.itervalues()], args.fasta_aa_directory)
dic_protein_in_genomes, dic_protein_length, files_read_counter = \
get_protein_info(genome_id_dictionary.keys(), args.fasta_aa_directory)
run_summary.write("Total fasta files: %d" % files_read_counter + "\n")
run_summary.write("Total number of proteins in the fasta files: %d" % len(dic_protein_length) + "\n")
#####Read the genome groups (if present)
genome_groups = {}
if args.group_information:
genome_groups = read_group_files(args.group_information)
run_summary.write("Total defined groups: %d" % len(genome_groups) + "\n")
#####################################################
#Look for unique protein in each genome
selected_unique_proteins, removed_unique_proteins, total_number_proteins = \
get_unique_seqs_genome(dic_protein_in_genomes, set_of_proteins_in_clusters, dic_protein_length, 50)
#Check that everything looks ok
check_number = 0
for value in selected_unique_proteins.itervalues():
check_number += len(value)
for value in removed_unique_proteins.itervalues():
check_number += len(value)
if total_number_proteins - len(set_of_proteins_in_clusters) - check_number != 0:
print "Total number of proteins:" + str(total_number_proteins)
print "Total number of proteins in clusters:" + str(len(set_of_proteins_in_clusters))
print "Removed proteins:" + str(check_number)
sys.exit("Failed checkpoint. The number of unique proteins and proteins in "
"clusters does not match the total number of proteins")
#Print the output files
count_unique_proteins = open(args.output_directory + "/count_unique_sequences.txt", 'w')
list_unique_proteins = open(args.output_directory + "/list_unique_sequences.txt", 'w')
count_unique_proteins.write("Genome\tSelected\tTooShort\n")
for genome in selected_unique_proteins:
count_unique_proteins.write(genome + "\t" + str(len(selected_unique_proteins[genome])) + "\t" +
str(len(removed_unique_proteins[genome])) + "\n")
for protein in selected_unique_proteins[genome]:
list_unique_proteins.write(genome + "\t" + protein.split("|")[1] + "\n")
count_unique_proteins.close()
list_unique_proteins.close()
############################
##Get the clusters shared between genomes and unique clusters to each genome
matrix_output = open(args.output_directory + "/matrix_output.txt", 'w')
list_unique_clusters = open(args.output_directory + "/list_unique_clusters.txt", 'w')
count_unique_clusters = open(args.output_directory + "/count_unique_clusters.txt", 'w')
list_shared_single_copy_clusters = open(args.output_directory + "/list_single_copy_clusters.txt", 'w')
list_shared_multiple_copy_clusters = open(args.output_directory + "/list_shared_multiple_copy.txt", 'w')
unique_clusters, shared_single_clusters, shared_multiple_clusters, all_clusters_matrix = \
seqs_shared_clusters(cluster_information, genome_id_dictionary)
#Print counters
run_summary.write("Number of shared single copy clusters: %d" % len(shared_single_clusters) + "\n")
run_summary.write("Number of shared multiple copy clusters: %d" % len(shared_multiple_clusters) + "\n")
#Print the outputs
matrix_output.write("\n".join(["\t".join(map(str, r)) for r in all_clusters_matrix])) # Matrix output
# Unique clusters per genome (duplicate or paralogs?)
count_unique_clusters.write("Genome\tNumber of Clusters\n")
for genome in unique_clusters:
count_unique_clusters.write(genome + "\t" + str(len(unique_clusters[genome])) + "\n")
for cluster in unique_clusters[genome]:
list_unique_clusters.write(genome + "\t" + cluster + "\t"
+ ",".join(protein for protein in cluster_information[cluster]) + "\n")
# Single copy shared clusters
for cluster in shared_single_clusters:
list_shared_single_copy_clusters.write(cluster + "\t" + ",".join(cluster_information[cluster]) + "\n")
# Multiple copy shared clusters
for cluster in shared_multiple_clusters:
list_shared_multiple_copy_clusters.write(cluster + "\t" + ",".join(cluster_information[cluster]) + "\n")
matrix_output.close()
list_unique_clusters.close()
count_unique_clusters.close()
list_shared_single_copy_clusters.close()
list_shared_multiple_copy_clusters.close()
###Save the cluster information
list_all_clusters = open(args.output_directory + "/list_all_clusters.txt", 'w')
for cluster in cluster_information:
list_all_clusters.write(cluster + "\t" + ",".join(cluster_information[cluster]) + "\n")
list_all_clusters.close()
###############
##Get clusters shared by groups
if args.group_information:
#print genome_groups
unique_group_clusters, combination_clusters = clusters_in_groups(cluster_information, genome_groups)
list_unique_clusters_group = open(args.output_directory + "/list_unique_clusters_group.txt", 'w')
list_all_group_combinations = open(args.output_directory + "/list_all_group_combinations.txt", 'w')
count_group_results = open(args.output_directory + "/count_groups.txt", 'w')
protein_count_group_results = open(args.output_directory + "/count_proteins_group.txt", 'w')
for group in unique_group_clusters:
protein_count = sum(len(cluster_information[cluster]) for cluster in unique_group_clusters[group])
count_group_results.write(group + "\t" +
str(len(unique_group_clusters[group])) + "\t" + str(protein_count) + "\n")
for cluster in unique_group_clusters[group]:
list_unique_clusters_group.write(group + "\t" + cluster + "\t" + ",".join(cluster_information[cluster])
+ "\n")
count_group_results.write("\n")
for combination in combination_clusters:
combination_name = "-".join(combination)
protein_count = sum(len(cluster_information[cluster]) for cluster in combination_clusters[combination])
count_group_results.write(combination_name + "\t" +
str(len(combination_clusters[combination])) + "\t" + str(protein_count) + "\n")
for cluster in combination_clusters[combination]:
list_all_group_combinations.write(combination_name + "\t"
+ cluster + "\t" + ",".join(cluster_information[cluster]) + "\n")
protein_count_group_results.write(combination_name)
for group in combination:
count = 0
genomes = genome_groups[group]
for cluster in combination_clusters[combination]:
for genome in genomes:
for protein in cluster_information[cluster]:
if protein.startswith(genome):
count += 1
protein_count_group_results.write("\t" + group + ":" + str(count))
protein_count_group_results.write("\n")
count_group_results.close()
list_unique_clusters_group.close()
list_all_group_combinations.close()
run_summary.close()