-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_ssl.py
102 lines (76 loc) · 3.58 KB
/
main_ssl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
from argparse import ArgumentParser
import torch
import os
import utils
from datasets import get_loaders
print(torch.cuda.is_available())
from self_sup.ssl_trainer import SSLTrainer
from misc.torchutils import seed_torch
"""
自监督预训练的入口函数
"""
def train(args):
kwargs = args.__dict__
dataloaders = get_loaders(**kwargs)
model = SSLTrainer(args=args, dataloaders=dataloaders)
model.train_models()
seed_torch(seed=2021)
def update_num_workers(args):
args.num_workers = args.num_workers if args.num_workers < args.batch_size \
else args.batch_size
print('num_workers: %d' % args.num_workers)
if __name__ == '__main__':
# ------------
# args
# ------------
parser = ArgumentParser()
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--project_name', default='test', type=str)
parser.add_argument('--checkpoint_root', default='checkpoints', type=str)
# logger
parser.add_argument('--with_wandb', type=bool, default=False,
help="use wandb or not")
parser.add_argument('--project_task', type=str, default='pretrain',
help="which task is it?: cd? seg? ssl?, pretrain")
# data
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--persistent_workers', default=False, type=bool)
parser.add_argument('--dataset_type', default='SegDataset', type=str,
help='SegDataset, CDDataset, BiImageDataset, ImageDataset')
parser.add_argument('--data_name', default='get_start', type=str,
help='inria256 | get_start')
parser.add_argument('--n_class', default=2, type=int)
parser.add_argument('--val_data_norm', default=False, type=bool,
help='ssl任务中,train和val dataset出来的data都不需要norm')
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--split', default="get_start", type=str,
help='get_start | pos0.1_train')
parser.add_argument('--split_val', default="get_start", type=str,
help='get_start | pos0.1_val')
parser.add_argument('--img_size', default=256, type=int)
# model
parser.add_argument('--net_G', default='sadl_fpn_m2_resnet18_sample16_syn1', type=str,
help="sadl_fpn_m2_resnet18_sample16_syn1 | sadl_fpn_m2_resnet18_sample16_syn2")
# init backbone parameter from pretrained
parser.add_argument('--pretrained', default='imagenet', type=str,
help="imagenet | None | pretrain_path")
parser.add_argument('--num_epoch_to_save_best', default=50, type=int,
help='save best checkpoint every n epoch')
# optimizer
parser.add_argument('--optim_mode', default='sgd', type=str)
parser.add_argument('--lr', default=0.01, type=float)
parser.add_argument('--max_epochs', default=200, type=int)
parser.add_argument('--lr_policy', default='linear', type=str,
help='linear | step')
parser.add_argument('--lr_decay_iters', default=100, type=int)
args = parser.parse_args()
args.gpu_ids = utils.get_device(args.gpu_ids)
print(args.gpu_ids)
# update pretrained path
import data_config
args.pretrained = data_config.get_pretrained_path(args.pretrained)
update_num_workers(args)
# checkpoints dir
args.checkpoint_dir = os.path.join(args.checkpoint_root, args.project_name)
os.makedirs(args.checkpoint_dir, exist_ok=True)
train(args)