-
Notifications
You must be signed in to change notification settings - Fork 377
/
99_python_reference.py
623 lines (470 loc) · 18.2 KB
/
99_python_reference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
'''
Python 2.7x Reference Guide
Sources:
https://docs.python.org/2/
http://www.codecademy.com/tracks/python
https://developers.google.com/edu/python/
http://stackoverflow.com
Book: Python for Data Analysis (Appendix)
and many others...
Table of Contents:
Imports
Data Types
Math
Comparisons and Boolean Operations
Conditional Statements
Lists
Tuples
Strings
Dictionaries
Sets
Defining Functions
Anonymous (Lambda) Functions
For Loops and While Loops
Comprehensions
Map, Reduce, Filter
Will be added:
Zip
Try/Except
*args
Assertions
Reading/writing files
And more...
'''
### IMPORTS ###
# 'generic import' of math module
import math
math.sqrt(25)
# import a function
from math import sqrt
sqrt(25) # no longer have to reference the module
# import multiple functions at once
from math import cos, floor
# import all functions in a module (generally discouraged)
from os import *
# define an alias
import numpy as np
# show all functions in math module
dir(math)
### DATA TYPES ###
# determine the type of an object
type(2) # returns 'int'
type(2.0) # returns 'float'
type('two') # returns 'str'
type(True) # returns 'bool'
type(None) # returns 'NoneType'
# check if an object is of a given type
isinstance(2.0, int) # returns False
isinstance(2.0, (int, float)) # returns True
# convert an object to a given type
float(2)
int(2.9)
str(2.9)
# zero, None, and empty containers are converted to False
bool(0)
bool(None)
bool('') # empty string
bool([]) # empty list
bool({}) # empty dictionary
# non-empty containers and non-zeros are converted to True
bool(2)
bool('two')
bool([2])
### MATH ###
# basic operations
10 + 4 # add (returns 14)
10 - 4 # subtract (returns 6)
10 * 4 # multiply (returns 40)
10 ** 4 # exponent (returns 10000)
10 / 4 # divide (returns 2 because both types are 'int')
10 / float(4) # divide (returns 2.5)
5 % 4 # modulo (returns 1) - also known as the remainder
# force '/' in Python 2.x to perform 'true division' (unnecessary in Python 3.x)
from __future__ import division
10 / 4 # true division (returns 2.5)
10 // 4 # floor division (returns 2)
### COMPARISONS AND BOOLEAN OPERATIONS ###
# comparisons (these return True)
5 > 3
5 >= 3
5 != 3
5 == 5
# boolean operations (these return True)
5 > 3 and 6 > 3
5 > 3 or 5 < 3
not False
False or not False and True # evaluation order: not, and, or
### CONDITIONAL STATEMENTS ###
# if statement
if x > 0:
print 'positive'
# if/else statement
if x > 0:
print 'positive'
else:
print 'zero or negative'
# if/elif/else statement
if x > 0:
print 'positive'
elif x == 0:
print 'zero'
else:
print 'negative'
# single-line if statement (sometimes discouraged)
if x > 0: print 'positive'
# single-line if/else statement (sometimes discouraged)
# known as a 'ternary operator'
'positive' if x > 0 else 'zero or negative'
### LISTS ###
## properties: ordered, iterable, mutable, can contain multiple data types
# create an empty list (two ways)
empty_list = []
empty_list = list()
# create a list
simpsons = ['homer', 'marge', 'bart']
# examine a list
simpsons[0] # print element 0 ('homer')
len(simpsons) # returns the length (3)
# modify a list (does not return the list)
simpsons.append('lisa') # append element to end
simpsons.extend(['itchy', 'scratchy']) # append multiple elements to end
simpsons.insert(0, 'maggie') # insert element at index 0 (shifts everything right)
simpsons.remove('bart') # searches for first instance and removes it
simpsons.pop(0) # removes element 0 and returns it
del simpsons[0] # removes element 0 (does not return it)
simpsons[0] = 'krusty' # replace element 0
# concatenate lists (slower than 'extend' method)
neighbors = simpsons + ['ned','rod','todd']
# find elements in a list
simpsons.count('lisa') # counts the number of instances
simpsons.index('itchy') # returns index of first instance
# list slicing [start:end:stride]
weekdays = ['mon','tues','wed','thurs','fri']
weekdays[0] # element 0
weekdays[0:3] # elements 0, 1, 2
weekdays[:3] # elements 0, 1, 2
weekdays[3:] # elements 3, 4
weekdays[-1] # last element (element 4)
weekdays[::2] # every 2nd element (0, 2, 4)
weekdays[::-1] # backwards (4, 3, 2, 1, 0)
# alternative method for returning the list backwards
list(reversed(weekdays))
# sort a list in place (modifies but does not return the list)
simpsons.sort()
simpsons.sort(reverse=True) # sort in reverse
simpsons.sort(key=len) # sort by a key
# return a sorted list (but does not modify the original list)
sorted(simpsons)
sorted(simpsons, reverse=True)
sorted(simpsons, key=len)
# insert into an already sorted list, and keep it sorted
num = [10, 20, 40, 50]
from bisect import insort
insort(num, 30)
# create a second reference to the same list
same_num = num
same_num[0] = 0 # modifies both 'num' and 'same_num'
# copy a list (two ways)
new_num = num[:]
new_num = list(num)
# examine objects
id(num) == id(same_num) # returns True
id(num) == id(new_num) # returns False
num is same_num # returns True
num is new_num # returns False
num == same_num # returns True
num == new_num # returns True (their contents are equivalent)
### TUPLES ###
## like lists, but they don't change size
## properties: ordered, iterable, immutable, can contain multiple data types
# create a tuple
digits = (0, 1, 'two') # create a tuple directly
digits = tuple([0, 1, 'two']) # create a tuple from a list
zero = (0,) # trailing comma is required to indicate it's a tuple
# examine a tuple
digits[2] # returns 'two'
len(digits) # returns 3
digits.count(0) # counts the number of instances of that value (1)
digits.index(1) # returns the index of the first instance of that value (1)
# elements of a tuple cannot be modified
digits[2] = 2 # throws an error
# concatenate tuples
digits = digits + (3, 4)
# create a single tuple with elements repeated (also works with lists)
(3, 4) * 2 # returns (3, 4, 3, 4)
# sort a list of tuples
tens = [(20, 60), (10, 40), (20, 30)]
sorted(tens) # sorts by first element in tuple, then second element
# returns [(10, 40), (20, 30), (20, 60)]
# tuple unpacking
bart = ('male', 10, 'simpson') # create a tuple
(sex, age, surname) = bart # assign three values at once
### STRINGS ###
## properties: iterable, immutable
# create a string
s = str(42) # convert another data type into a string
s = 'I like you'
# examine a string
s[0] # returns 'I'
len(s) # returns 10
# string slicing like lists
s[:6] # returns 'I like'
s[7:] # returns 'you'
s[-1] # returns 'u'
# basic string methods (does not modify the original string)
s.lower() # returns 'i like you'
s.upper() # returns 'I LIKE YOU'
s.startswith('I') # returns True
s.endswith('you') # returns True
s.isdigit() # returns False (returns True if every character in the string is a digit)
s.find('like') # returns index of first occurrence (2), but doesn't support regex
s.find('hate') # returns -1 since not found
s.replace('like','love') # replaces all instances of 'like' with 'love'
# split a string into a list of substrings separated by a delimiter
s.split(' ') # returns ['I','like','you']
s.split() # same thing
s2 = 'a, an, the'
s2.split(',') # returns ['a',' an',' the']
# join a list of strings into one string using a delimiter
stooges = ['larry','curly','moe']
' '.join(stooges) # returns 'larry curly moe'
# concatenate strings
s3 = 'The meaning of life is'
s4 = '42'
s3 + ' ' + s4 # returns 'The meaning of life is 42'
s3 + ' ' + str(42) # same thing
# remove whitespace from start and end of a string
s5 = ' ham and cheese '
s5.strip() # returns 'ham and cheese'
# string substitutions: all of these return 'raining cats and dogs'
'raining %s and %s' % ('cats','dogs') # old way
'raining {} and {}'.format('cats','dogs') # new way
'raining {arg1} and {arg2}'.format(arg1='cats',arg2='dogs') # named arguments
# string formatting
# more examples: http://mkaz.com/2012/10/10/python-string-format/
'pi is {:.2f}'.format(3.14159) # returns 'pi is 3.14'
# normal strings versus raw strings
print 'first line\nsecond line' # normal strings allow for escaped characters
print r'first line\nfirst line' # raw strings treat backslashes as literal characters
### DICTIONARIES ###
## properties: unordered, iterable, mutable, can contain multiple data types
## made up of key-value pairs
## keys must be unique, and can be strings, numbers, or tuples
## values can be any type
# create an empty dictionary (two ways)
empty_dict = {}
empty_dict = dict()
# create a dictionary (two ways)
family = {'dad':'homer', 'mom':'marge', 'size':6}
family = dict(dad='homer', mom='marge', size=6)
# convert a list of tuples into a dictionary
list_of_tuples = [('dad','homer'), ('mom','marge'), ('size', 6)]
family = dict(list_of_tuples)
# examine a dictionary
family['dad'] # returns 'homer'
len(family) # returns 3
family.keys() # returns list: ['dad', 'mom', 'size']
family.values() # returns list: ['homer', 'marge', 6]
family.items() # returns list of tuples:
# [('dad', 'homer'), ('mom', 'marge'), ('size', 6)]
'mom' in family # returns True
'marge' in family # returns False (only checks keys)
# modify a dictionary (does not return the dictionary)
family['cat'] = 'snowball' # add a new entry
family['cat'] = 'snowball ii' # edit an existing entry
del family['cat'] # delete an entry
family['kids'] = ['bart', 'lisa'] # value can be a list
family.pop('dad') # removes an entry and returns the value ('homer')
family.update({'baby':'maggie', 'grandpa':'abe'}) # add multiple entries
# accessing values more safely with 'get'
family['mom'] # returns 'marge'
family.get('mom') # same thing
family['grandma'] # throws an error
family.get('grandma') # returns None
family.get('grandma', 'not found') # returns 'not found' (the default)
# accessing a list element within a dictionary
family['kids'][0] # returns 'bart'
family['kids'].remove('lisa') # removes 'lisa'
# string substitution using a dictionary
'youngest child is %(baby)s' % family # returns 'youngest child is maggie'
### SETS ###
## like dictionaries, but with keys only (no values)
## properties: unordered, iterable, mutable, can contain multiple data types
## made up of unique elements (strings, numbers, or tuples)
# create an empty set
empty_set = set()
# create a set
languages = {'python', 'r', 'java'} # create a set directly
snakes = set(['cobra', 'viper', 'python']) # create a set from a list
# examine a set
len(languages) # returns 3
'python' in languages # returns True
# set operations
languages & snakes # returns intersection: {'python'}
languages | snakes # returns union: {'cobra', 'r', 'java', 'viper', 'python'}
languages - snakes # returns set difference: {'r', 'java'}
snakes - languages # returns set difference: {'cobra', 'viper'}
# modify a set (does not return the set)
languages.add('sql') # add a new element
languages.add('r') # try to add an existing element (ignored, no error)
languages.remove('java') # remove an element
languages.remove('c') # try to remove a non-existing element (throws an error)
languages.discard('c') # removes an element if present, but ignored otherwise
languages.pop() # removes and returns an arbitrary element
languages.clear() # removes all elements
languages.update('go', 'spark') # add multiple elements (can also pass a list or set)
# get a sorted list of unique elements from a list
sorted(set([9, 0, 2, 1, 0])) # returns [0, 1, 2, 9]
### DEFINING FUNCTIONS ###
# define a function with no arguments and no return values
def print_text():
print 'this is text'
# call the function
print_text()
# define a function with one argument and no return values
def print_this(x):
print x
# call the function
print_this(3) # prints 3
n = print_this(3) # prints 3, but doesn't assign 3 to n
# because the function has no return statement
# define a function with one argument and one return value
def square_this(x):
return x**2
# include an optional docstring to describe the effect of a function
def square_this(x):
"""Return the square of a number."""
return x**2
# call the function
square_this(3) # prints 9
var = square_this(3) # assigns 9 to var, but does not print 9
# define a function with two 'positional arguments' (no default values) and
# one 'keyword argument' (has a default value)
def calc(a, b, op='add'):
if op == 'add':
return a + b
elif op == 'sub':
return a - b
else:
print 'valid operations are add and sub'
# call the function
calc(10, 4, op='add') # returns 14
calc(10, 4, 'add') # also returns 14: unnamed arguments are inferred by position
calc(10, 4) # also returns 14: default for 'op' is 'add'
calc(10, 4, 'sub') # returns 6
calc(10, 4, 'div') # prints 'valid operations are add and sub'
# use 'pass' as a placeholder if you haven't written the function body
def stub():
pass
# return two values from a single function
def min_max(nums):
return min(nums), max(nums)
# return values can be assigned to a single variable as a tuple
nums = [1, 2, 3]
min_max_num = min_max(nums) # min_max_num = (1, 3)
# return values can be assigned into multiple variables using tuple unpacking
min_num, max_num = min_max(nums) # min_num = 1, max_num = 3
### ANONYMOUS (LAMBDA) FUNCTIONS ###
## primarily used to temporarily define a function for use by another function
# define a function the "usual" way
def squared(x):
return x**2
# define an identical function using lambda
squared = lambda x: x**2
# sort a list of strings by the last letter (without using lambda)
simpsons = ['homer', 'marge', 'bart']
def last_letter(word):
return word[-1]
sorted(simpsons, key=last_letter)
# sort a list of strings by the last letter (using lambda)
sorted(simpsons, key=lambda word: word[-1])
### FOR LOOPS AND WHILE LOOPS ###
# range returns a list of integers
range(0, 3) # returns [0, 1, 2]: includes first value but excludes second value
range(3) # same thing: starting at zero is the default
range(0, 5, 2) # returns [0, 2, 4]: third argument specifies the 'stride'
# for loop (not recommended)
fruits = ['apple', 'banana', 'cherry']
for i in range(len(fruits)):
print fruits[i].upper()
# alternative for loop (recommended style)
for fruit in fruits:
print fruit.upper()
# use xrange when iterating over a large sequence to avoid actually creating the integer list in memory
for i in xrange(10**6):
pass
# iterate through two things at once (using tuple unpacking)
family = {'dad':'homer', 'mom':'marge', 'size':6}
for key, value in family.items():
print key, value
# use enumerate if you need to access the index value within the loop
for index, fruit in enumerate(fruits):
print index, fruit
# for/else loop
for fruit in fruits:
if fruit == 'banana':
print "Found the banana!"
break # exit the loop and skip the 'else' block
else:
# this block executes ONLY if the for loop completes without hitting 'break'
print "Can't find the banana"
# while loop
count = 0
while count < 5:
print "This will print 5 times"
count += 1 # equivalent to 'count = count + 1'
### COMPREHENSIONS ###
# for loop to create a list of cubes
nums = [1, 2, 3, 4, 5]
cubes = []
for num in nums:
cubes.append(num**3)
# equivalent list comprehension
cubes = [num**3 for num in nums] # [1, 8, 27, 64, 125]
# for loop to create a list of cubes of even numbers
cubes_of_even = []
for num in nums:
if num % 2 == 0:
cubes_of_even.append(num**3)
# equivalent list comprehension
# syntax: [expression for variable in iterable if condition]
cubes_of_even = [num**3 for num in nums if num % 2 == 0] # [8, 64]
# for loop to cube even numbers and square odd numbers
cubes_and_squares = []
for num in nums:
if num % 2 == 0:
cubes_and_squares.append(num**3)
else:
cubes_and_squares.append(num**2)
# equivalent list comprehension (using a ternary expression)
# syntax: [true_condition if condition else false_condition for variable in iterable]
cubes_and_squares = [num**3 if num % 2 == 0 else num**2 for num in nums] # [1, 8, 9, 64, 25]
# for loop to flatten a 2d-matrix
matrix = [[1, 2], [3, 4]]
items = []
for row in matrix:
for item in row:
items.append(item)
# equivalent list comprehension
items = [item for row in matrix
for item in row] # [1, 2, 3, 4]
# set comprehension
fruits = ['apple', 'banana', 'cherry']
unique_lengths = {len(fruit) for fruit in fruits} # {5, 6}
# dictionary comprehension
fruit_lengths = {fruit:len(fruit) for fruit in fruits} # {'apple': 5, 'banana': 6, 'cherry': 6}
fruit_indices = {fruit:index for index, fruit in enumerate(fruits)} # {'apple': 0, 'banana': 1, 'cherry': 2}
### MAP, REDUCE, FILTER ###
# 'map' applies a function to every element of a sequence and returns a list
simpsons = ['homer', 'marge', 'bart']
map(len, simpsons) # returns [5, 5, 4]
map(lambda word: word[-1], simpsons) # returns ['r', 'e', 't']
# equivalent list comprehensions
[len(word) for word in simpsons]
[word[-1] for word in simpsons]
# 'reduce' applies a binary function to the first two elements of a sequence,
# then repeats with the result and the next element, through the end of the sequence
reduce(lambda x, y: x + y, range(4)) # (((0+1)+2)+3) = 6
# 'filter' returns a sequence containing the items from the original sequence
# for which the condition is True
filter(lambda x: x % 2 == 0, range(5)) # returns [0, 2, 4]