-
Notifications
You must be signed in to change notification settings - Fork 87
/
Copy pathrun_tf_slim_example_lenet5_nmist.py
405 lines (297 loc) · 16.6 KB
/
run_tf_slim_example_lenet5_nmist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#-*- coding: utf-8 -*-
#! /usr/bin/env python
'''
filename: run_tf_basic_lenet5_mnist.py
description: simple end-to-end LetNet5 implementation
- For the purpose of EverybodyTensorFlow tutorial
-
- training with Mnist data set from Yann's website.
- the benchmark test error rate is 0.95% which is given by LeCun 1998
- references:
- https://github.com/tensorflow/models/blob/master/tutorials/image/mnist/convolutional.py
- https://github.com/sujaybabruwad/LeNet-in-Tensorflow/blob/master/LeNet-Lab.ipynb
author: Jaewook Kang
date : 2018 Feb.
'''
# Anybody know why we should include "__future__" code conventionally?
# anyway I include the below:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import time
from datetime import datetime
from os import getcwd
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
import matplotlib.pyplot as plt
sys.path.insert(0, getcwd()+'/tf_my_modules/cnn')
from mnist_data_loader import DataFilename
from mnist_data_loader import MnistLoader
# configure training parameters =====================================
TRAININGSET_SIZE = 5000
VALIDATIONSET_SIZE = 1000
TESTSET_SIZE = 1000
class TrainConfig(object):
def __init__(self):
self.learning_rate = 0.01
self.is_learning_rate_decay = True
self.learning_rate_decay_rate =0.99
self.opt_type='Adam'
self.training_epochs = 100
self.minibatch_size = 1000
# the number of step between evaluation
self.display_step = 5
self.total_batch = int(TRAININGSET_SIZE / self.minibatch_size)
# batch norm config
self.batch_norm_epsilon = 1E-5
self.batch_norm_decay = 0.99
self.FLAGS = None
# FC layer config
self.dropout_keeprate = 0.8
self.fc_layer_l2loss_epsilon = 5E-5
self.tf_data_type = tf.float32
self.weight_initializer = tf.contrib.layers.xavier_initializer()
self.random_seed = 66478
# tensorboard config
now = datetime.utcnow().strftime("%Y%m%d%H%M%S")
self.root_logdir = getcwd() + '/export/lenet5/'
self.ckptdir = self.root_logdir + '/pb_and_ckpt/'
self.tflogdir = "{}/run-{}/".format(self.root_logdir+'/tf_logs', now)
def conv_layer(layer_in,
kernel_shape,
kernel_stride,
kernel_padding,
train_config,
scope=None):
with tf.variable_scope(name_or_scope=scope,values=[layer_in]):
weight = tf.get_variable(name='weight',
shape=kernel_shape,
dtype=train_config.tf_data_type,
initializer= train_config.weight_initializer)
bias = tf.get_variable(name='bias',
shape=kernel_shape[3],
dtype=train_config.tf_data_type,
initializer=train_config.weight_initializer)
conv_out = tf.nn.conv2d(input= layer_in,
filter=weight,
strides =kernel_stride,
padding=kernel_padding)
logit_out = tf.nn.bias_add(value=conv_out,
bias=bias)
return logit_out
def get_model(model_in,
dropout_keeprate_node,
train_config,
scope):
chin_num = model_in.get_shape().as_list()[3]
model_shape ={
'c1_shape': [5,5,chin_num,6],
's2_shape': [1,2,2,1],
'c3_shape': [5,5,6,16],
's4_shape': [1,2,2,1],
'c5_shape': [5,5,16,120],
'f6_shape': [120,84],
'out_shape': [84,10]
}
net = model_in
with tf.variable_scope(name_or_scope=scope,values=[model_in]):
c1_out = slim.conv2d(inputs=net,
num_outputs=6,
kernel_size=[5,5],
stride=[1,1],
padding='SAME',
activation_fn=tf.nn.relu,
weights_initializer=train_config.weight_initializer,
biases_initializer=tf.zeros_initializer(),
trainable=True,
scope='c1_conv')
# c1_logit = conv_layer(net,
# kernel_shape=model_shape['c1_shape'],
# kernel_stride=[1,1,1,1],
# kernel_padding='SAME',
# train_config=train_config,
# scope='c1_conv')
# c1_out = tf.nn.relu(c1_logit)
s2_out = slim.max_pool2d(inputs=c1_out,
kernel_size=[2,2],
stride=[2,2],
padding='VALID',
scope='s2_pool')
# s2_out = tf.nn.max_pool(value=c1_out,
# ksize=model_shape['s2_shape'],
# strides=[1,2,2,1],
# padding='VALID',
# name='s2_pool')
c3_logit = conv_layer(s2_out,
kernel_shape=model_shape['c3_shape'],
kernel_stride=[1,1,1,1],
kernel_padding='VALID',
train_config=train_config,
scope='c3_conv')
c3_out = tf.nn.relu(c3_logit)
s4_out = tf.nn.max_pool(value=c3_out,
ksize=model_shape['s4_shape'],
strides=[1,2,2,1],
padding='VALID',
name='s4_pool')
c5_logit = conv_layer(s4_out,
kernel_shape=model_shape['c5_shape'],
kernel_stride=[1,1,1,1],
kernel_padding='VALID',
train_config=train_config,
scope='c5_conv')
c5_out = tf.nn.relu(c5_logit)
f6_logit = slim.fully_connected(inputs=c5_out,
num_outputs=84,
activation_fn=None,
weights_initializer=train_config.weight_initializer,
biases_initializer=tf.zeros_initializer(),
trainable=True,
scope='f6_layer')
f6_logit = slim.dropout(inputs=f6_logit,
keep_prob=dropout_keeprate_node,
is_training=True,
seed=train_config.random_seed)
# f6_logit = tf.layers.dense(c5_out,model_shape['f6_shape'][1])
# f6_logit = tf.nn.dropout(x=f6_logit,
# keep_prob=dropout_keeprate_node,
# seed=train_config.random_seed)
f6_out = tf.nn.relu(f6_logit)
out_logit = tf.layers.dense(f6_out,model_shape['out_shape'][1])
out_logit = tf.nn.dropout(x=out_logit,
keep_prob=dropout_keeprate_node,
seed=train_config.random_seed)
out_logit = tf.reshape(out_logit,
shape=[-1,
model_shape['out_shape'][1]])
return out_logit
if __name__ == '__main__':
# worker instance declaration
datafilename_worker = DataFilename()
mnist_data_loader = MnistLoader()
trainconfig_worker = TrainConfig()
# Download the data
train_data_filepathname = mnist_data_loader.download_mnist_dataset(
filename=datafilename_worker.trainingimages_filename)
train_labels_filepathname = mnist_data_loader.download_mnist_dataset(
filename=datafilename_worker.traininglabels_filename)
test_data_filepathname = mnist_data_loader.download_mnist_dataset(
filename=datafilename_worker.testimages_filename)
test_labels_filepathname = mnist_data_loader.download_mnist_dataset(
filename=datafilename_worker.testlabels_filename)
# extract data from gzip files into numpy arrays
train_data = mnist_data_loader.extract_data(filename=train_data_filepathname,
num_images=TRAININGSET_SIZE + VALIDATIONSET_SIZE)
train_labels = mnist_data_loader.extract_label(filename=train_labels_filepathname,
num_images=TRAININGSET_SIZE + VALIDATIONSET_SIZE)
test_data = mnist_data_loader.extract_data(filename=test_data_filepathname,
num_images=TESTSET_SIZE)
test_labels = mnist_data_loader.extract_label(filename=test_labels_filepathname,
num_images=TESTSET_SIZE)
# prepare validation by spliting training set
validation_data = train_data[:VALIDATIONSET_SIZE, ...]
validation_labels = train_labels[:VALIDATIONSET_SIZE]
train_data = train_data[VALIDATIONSET_SIZE:, ...]
train_labels = train_labels[VALIDATIONSET_SIZE:]
# network model construction ======================
# TF computational graph construction
lenet5_tf_graph = tf.Graph()
with lenet5_tf_graph.as_default():
# training nodes (data,label) placeholders
lenet5_model_in = tf.placeholder(dtype=trainconfig_worker.tf_data_type,
shape=[None, mnist_data_loader.IMAGE_SIZE,
mnist_data_loader.IMAGE_SIZE,
mnist_data_loader.NUM_CHANNELS])
lenet5_label = tf.placeholder(dtype=tf.int64,
shape=[None, ])
dropout_keeprate_node = tf.placeholder(dtype=trainconfig_worker.tf_data_type)
model_out = get_model(model_in = lenet5_model_in,
dropout_keeprate_node=dropout_keeprate_node,
train_config = trainconfig_worker,
scope = 'model')
loss_op = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lenet5_label,
logits=model_out))
train_op = tf.train.AdamOptimizer(learning_rate=trainconfig_worker.learning_rate)\
.minimize(loss=loss_op)
with tf.name_scope('model_out'):
model_pred = tf.nn.softmax(model_out)
with tf.name_scope('eval_performance'):
error = tf.equal(tf.argmax(model_pred,1),lenet5_label)
tf_pred_accuracy = tf.reduce_mean(tf.cast(error,tf.float32))
# Initialize the variables (i.e. assign their default value)
init = tf.global_variables_initializer()
## file writing for Tensorboard
file_writer = tf.summary.FileWriter(logdir=trainconfig_worker.tflogdir)
file_writer.add_graph(lenet5_tf_graph)
## Summary for Tensorboard visualization
tb_summary_accuracy = tf.summary.scalar('accuracy', tf_pred_accuracy)
tb_summary_cost = tf.summary.scalar('loss', loss_op)
# network model training ==============================
train_error_rate = np.zeros(shape=np.ceil(trainconfig_worker.training_epochs/trainconfig_worker.display_step).astype(np.int16),
dtype=np.float32)
validation_error_rate = np.zeros(shape=np.ceil(trainconfig_worker.training_epochs/trainconfig_worker.display_step).astype(np.int16),
dtype=np.float32)
test_error_rate = np.zeros(shape=np.ceil(trainconfig_worker.training_epochs/trainconfig_worker.display_step).astype(np.int16),
dtype=np.float32)
with tf.Session(graph=lenet5_tf_graph) as sess:
# Run the variable initializer
sess.run(init)
print("-------------------------------------------")
rate_record_index = 0
for epoch in range(trainconfig_worker.training_epochs):
avg_cost = 0.
avg_minibatch_error_rate = 0.
start_time = time.time()
# [data shuffling here]
for i in range(trainconfig_worker.total_batch):
data_start_index = i * trainconfig_worker.minibatch_size
data_end_index = (i + 1) * trainconfig_worker.minibatch_size
batch_data = train_data [data_start_index:data_end_index, ...]
batch_label = train_labels[data_start_index:data_end_index]
_, minibatch_cost = sess.run([train_op,loss_op],
feed_dict={lenet5_model_in: batch_data,
lenet5_label: batch_label,
dropout_keeprate_node: trainconfig_worker.dropout_keeprate})
# compute average cost and error rate
avg_cost += minibatch_cost
avg_cost = avg_cost / trainconfig_worker.total_batch
if trainconfig_worker.display_step == 0:
continue
elif (epoch + 1) % trainconfig_worker.display_step == 0:
elapsed_time = time.time() - start_time
train_error_rate[rate_record_index] = (1.0 - tf_pred_accuracy.eval(feed_dict={lenet5_model_in: train_data,
lenet5_label: train_labels,
dropout_keeprate_node: 1.0})) *100.0
validation_error_rate[rate_record_index] = (1.0 - tf_pred_accuracy.eval(feed_dict={lenet5_model_in: validation_data,
lenet5_label: validation_labels,
dropout_keeprate_node: 1.0})) * 100.0
test_error_rate[rate_record_index] = (1.0 - tf_pred_accuracy.eval(feed_dict={lenet5_model_in: test_data,
lenet5_label: test_labels,
dropout_keeprate_node: 1.0})) * 100.0
# tb_summary_cost_result, tb_summary_accuracy_result = sess.run([tb_summary_cost,tb_summary_accuracy],
# feed_dict={lenet5_model_in: train_data,
# lenet5_label: train_labels,
# dropout_keeprate_node:1.0})
# file_writer.add_summary(summary_str,step)
print('At epoch = %d, elapsed_time = %.1f ms' % (epoch, elapsed_time))
print("Training set avg cost (avg over minibatches)=%.2f" % avg_cost)
print("Training set Err rate (avg over minibatches)= %.2f %% " % (train_error_rate[rate_record_index]))
print("Validation set Err rate (total batch)= %.2f %%" % (validation_error_rate[rate_record_index]))
print("Test Set Err. rate (total batch) = %.2f %%" % (test_error_rate[rate_record_index]) )
print("--------------------------------------------")
rate_record_index += 1
print("Training finished!")
#file_writer.close()
# Training result visualization ===============================================
hfig1 = plt.figure(1, figsize=(10, 10))
err_rate_index = np.array([elem for elem in range(train_error_rate.shape[0])])
plt.plot(err_rate_index, train_error_rate, label='Training err', color='r', marker='o')
plt.plot(err_rate_index, validation_error_rate, label='Validation err', color='b', marker='x')
plt.plot(err_rate_index, test_error_rate, label='Test err', color='g', marker='d')
plt.legend()
plt.title('Train/Valid/Test Error rate')
plt.xlabel('Iteration epoch')
plt.ylabel('error Rate')
plt.show()