-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathwastesort.py
43 lines (33 loc) · 1.41 KB
/
wastesort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import keras
import tensorflow as tf
import sys
import os
# Disable tensorflow compilation warnings
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf
image_path = './test_input/'
# Loads label file, strips off carriage return
label_lines = [line.rstrip() for line
in tf.gfile.GFile("tf_files/retrained_labels.txt")]
# Unpersists graph from file
with tf.gfile.FastGFile("tf_files/retrained_graph.pb", 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(graph_def, name='')
#lists all files to be tested in test_input folder
list_images=os.listdir(image_path)
with tf.Session() as sess:
for igs in list_images:
#load the image data
image_data=tf.gfile.FastGFile(image_path+igs, 'rb').read()
# Feed the image_data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
predictions = sess.run(softmax_tensor, \
{'DecodeJpeg/contents:0': image_data})
# Sort to show labels of first prediction in order of confidence
top_k = predictions[0].argsort()[-len(predictions[0]):][::-1]
print( '\n'+igs+' :')
for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[0][node_id]
print('%s (score = %.5f)' % (human_string, score))