From 78514e07a7517b618f9fc4c675e974bab145112d Mon Sep 17 00:00:00 2001 From: Kittensx Date: Sun, 27 Oct 2024 10:08:52 -0400 Subject: [PATCH] Add files via upload --- .../simple_karras_exponential_scheduler.py | 395 ++++++++++++++++++ modules/simple_kes_scheduler.yaml | 146 +++++++ 2 files changed, 541 insertions(+) create mode 100644 modules/simple_karras_exponential_scheduler.py create mode 100644 modules/simple_kes_scheduler.yaml diff --git a/modules/simple_karras_exponential_scheduler.py b/modules/simple_karras_exponential_scheduler.py new file mode 100644 index 00000000000..ab33c75a7fc --- /dev/null +++ b/modules/simple_karras_exponential_scheduler.py @@ -0,0 +1,395 @@ +#simple_karras_exponential_scheduler.py +import torch +import logging +from k_diffusion.sampling import get_sigmas_karras, get_sigmas_exponential +import os +import yaml +import random +from watchdog.observers import Observer +from watchdog.events import FileSystemEventHandler +from datetime import datetime + +import os +import logging +from datetime import datetime + +class CustomLogger: + def __init__(self, log_name, print_to_console=False, debug_enabled=False): + self.print_to_console = print_to_console #prints to console + self.debug_enabled = debug_enabled #logs debug messages + + # Create folders for generation info and error logs + gen_log_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'simple_kes_generation') + error_log_dir = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'simple_kes_error') + + os.makedirs(gen_log_dir, exist_ok=True) + os.makedirs(error_log_dir, exist_ok=True) + + # Get current time in HH-MM-SS format + current_time = datetime.now().strftime('%H-%M-%S') + + # Create file paths for the log files + gen_log_file_path = os.path.join(gen_log_dir, f'{current_time}.log') + error_log_file_path = os.path.join(error_log_dir, f'{current_time}.log') + + # Set up generation logger + #self.gen_logger = logging.getLogger(f'{log_name}_generation') + self.gen_logger = logging.getLogger('simple_kes_generation') + self.gen_logger.setLevel(logging.DEBUG) + self._setup_file_handler(self.gen_logger, gen_log_file_path) + + # Set up error logger + self.error_logger = logging.getLogger(f'{log_name}_error') + self.error_logger.setLevel(logging.ERROR) + self._setup_file_handler(self.error_logger, error_log_file_path) + + # Prevent log propagation to root logger (important to avoid accidental console logging) + self.gen_logger.propagate = False + self.error_logger.propagate = False + + + # Optionally print to console + if self.print_to_console: + self._setup_console_handler(self.gen_logger) + self._setup_console_handler(self.error_logger) + + def _setup_file_handler(self, logger, file_path): + """Set up file handler for logging to a file.""" + file_handler = logging.FileHandler(file_path, mode='a') + formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') + file_handler.setFormatter(formatter) + logger.addHandler(file_handler) + + def _setup_console_handler(self, logger): + """Optionally set up a console handler for logging to the console.""" + console_handler = logging.StreamHandler() + formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') + console_handler.setFormatter(formatter) + logger.addHandler(console_handler) + + def log_debug(self, message): + """Log a debug message.""" + if self.debug_enabled: + self.gen_logger.debug(message) + + def log_info(self, message): + """Log an info message.""" + self.gen_logger.info(message) + info=log_info #alias created + + def log_error(self, message): + """Log an error message.""" + self.error_logger.error(message) + + def enable_console_logging(self): + """Enable console logging dynamically.""" + if not any(isinstance(handler, logging.StreamHandler) for handler in self.gen_logger.handlers): + self._setup_console_handler(self.gen_logger) + + if not any(isinstance(handler, logging.StreamHandler) for handler in self.error_logger.handlers): + self._setup_console_handler(self.error_logger) + +# Usage example +custom_logger = CustomLogger('simple_kes', print_to_console=False, debug_enabled=True) + +# Logging examples +#custom_logger.log_debug("Debug message: Using default sigma_min: 0.01") +#custom_logger.info("Info message: Step completed successfully.") +#custom_logger.log_error("Error message: Something went wrong!") + + +class ConfigManagerYaml: + def __init__(self, config_path): + self.config_path = config_path + self.config_data = self.load_config() # Initialize config_data here + + def load_config(self): + try: + with open(self.config_path, 'r') as f: + user_config = yaml.safe_load(f) + return user_config + except FileNotFoundError: + print(f"Config file not found: {self.config_path}. Using empty config.") + return {} + except yaml.YAMLError as e: + print(f"Error loading config file: {e}") + return {} + + +#ConfigWatcher monitors changes to the config file and reloads during program use (so you can continue work without resetting the program) +class ConfigWatcher(FileSystemEventHandler): + def __init__(self, config_manager, config_path): + self.config_manager = config_manager + self.config_path = config_path + + def on_modified(self, event): + if event.src_path == self.config_path: + logging.info(f"Config file {self.config_path} modified. Reloading config.") + self.config_manager.config_data = self.config_manager.load_config() + + + +def start_config_watcher(config_manager, config_path): + event_handler = ConfigWatcher(config_manager, config_path) + observer = Observer() + observer.schedule(event_handler, os.path.dirname(config_path), recursive=False) + observer.start() + return observer + + +""" + Scheduler function that blends sigma sequences using Karras and Exponential methods with adaptive parameters. + + Parameters are dynamically updated if the config file changes during execution. +""" +# If user config is provided, update default config with user values +config_path = "modules/simple_kes_scheduler.yaml" +config_manager = ConfigManagerYaml(config_path) + + +# Start watching for config changes +observer = start_config_watcher(config_manager, config_path) +''' +def get_random_or_default(config, key_prefix, default_value): + """Helper function to either randomize a value or return the default.""" + randomize_flag = config['scheduler'].get(f'{key_prefix}_rand', False) + if randomize_flag: + rand_min = config['scheduler'].get(f'{key_prefix}_rand_min', default_value * 0.8) + rand_max = config['scheduler'].get(f'{key_prefix}_rand_max', default_value * 1.2) + value = random.uniform(rand_min, rand_max) + custom_logger.info(f"Randomized {key_prefix}: {value}" ) + else: + value = default_value + custom_logger.info(f"Using default {key_prefix}: {value}") + return value + ''' +def get_random_or_default(config, key_prefix, default_value, global_randomize): + """Helper function to either randomize a value based on conditions or return the default.""" + # Check if global randomize is on or the individual flag is on + randomize_flag = global_randomize or config['scheduler'].get(f'{key_prefix}_rand', False) + + if randomize_flag: + # Use specified min/max for randomization if the individual flag is set or global randomize is on + rand_min = config['scheduler'].get(f'{key_prefix}_rand_min', default_value * 0.8) + rand_max = config['scheduler'].get(f'{key_prefix}_rand_max', default_value * 1.2) + value = random.uniform(rand_min, rand_max) + custom_logger.info(f"Randomized {key_prefix}: {value}") + else: + value = default_value + custom_logger.info(f"Using default {key_prefix}: {value}") + + return value + + +def simple_karras_exponential_scheduler( + n, device, sigma_min=0.01, sigma_max=50, start_blend=0.1, end_blend=0.5, + sharpness=0.95, early_stopping_threshold=0.01, update_interval=10, initial_step_size=0.9, + final_step_size=0.2, initial_noise_scale=1.25, final_noise_scale=0.8, smooth_blend_factor=11, step_size_factor=0.8, noise_scale_factor=0.9, randomize=False, user_config=None +): + """ + Scheduler function that blends sigma sequences using Karras and Exponential methods with adaptive parameters. + + Parameters: + n (int): Number of steps. + sigma_min (float): Minimum sigma value. + sigma_max (float): Maximum sigma value. + device (torch.device): The device on which to perform computations (e.g., 'cuda' or 'cpu'). + start_blend (float): Initial blend factor for dynamic blending. + end_bend (float): Final blend factor for dynamic blending. + sharpen_factor (float): Sharpening factor to be applied adaptively. + early_stopping_threshold (float): Threshold to trigger early stopping. + update_interval (int): Interval to update blend factors. + initial_step_size (float): Initial step size for adaptive step size calculation. + final_step_size (float): Final step size for adaptive step size calculation. + initial_noise_scale (float): Initial noise scale factor. + final_noise_scale (float): Final noise scale factor. + step_size_factor: Adjust to compensate for oversmoothing + noise_scale_factor: Adjust to provide more variation + + Returns: + torch.Tensor: A tensor of blended sigma values. + """ + #debug_log("Entered simple_karras_exponential_scheduler function") + default_config = { + "debug": False, + "device": "cuda" if torch.cuda.is_available() else "cpu", + "sigma_min": 0.01, + "sigma_max": 50, #if sigma_max is too low the resulting picture may be undesirable. + "start_blend": 0.1, + "end_blend": 0.5, + "sharpness": 0.95, + "early_stopping_threshold": 0.01, + "update_interval": 10, + "initial_step_size": 0.9, + "final_step_size": 0.2, + "initial_noise_scale": 1.25, + "final_noise_scale": 0.8, + "smooth_blend_factor": 11, + "step_size_factor": 0.8, #suggested value to avoid oversmoothing + "noise_scale_factor": 0.9, #suggested value to add more variation + "randomize": False, + "sigma_min_rand": False, + "sigma_min_rand_min": 0.001, + "sigma_min_rand_max": 0.05, + "sigma_max_rand": False, + "sigma_max_rand_min": 0.05, + "sigma_max_rand_max": 0.20, + "start_blend_rand": False, + "start_blend_rand_min": 0.05, + "start_blend_rand_max": 0.2, + "end_blend_rand": False, + "end_blend_rand_min": 0.4, + "end_blend_rand_max": 0.6, + "sharpness_rand": False, + "sharpness_rand_min": 0.85, + "sharpness_rand_max": 1.0, + "early_stopping_rand": False, + "early_stopping_rand_min": 0.001, + "early_stopping_rand_max": 0.02, + "update_interval_rand": False, + "update_interval_rand_min": 5, + "update_interval_rand_max": 10, + "initial_step_rand": False, + "initial_step_rand_min": 0.7, + "initial_step_rand_max": 1.0, + "final_step_rand": False, + "final_step_rand_min": 0.1, + "final_step_rand_max": 0.3, + "initial_noise_rand": False, + "initial_noise_rand_min": 1.0, + "initial_noise_rand_max": 1.5, + "final_noise_rand": False, + "final_noise_rand_min": 0.6, + "final_noise_rand_max": 1.0, + "smooth_blend_factor_rand": False, + "smooth_blend_factor_rand_min": 6, + "smooth_blend_factor_rand_max": 11, + "step_size_factor_rand": False, + "step_size_factor_rand_min": 0.65, + "step_size_factor_rand_max": 0.85, + "noise_scale_factor_rand": False, + "noise_scale_factor_rand_min": 0.75, + "noise_scale_factor_rand_max": 0.95, + } + custom_logger.info(f"Default Config create {default_config}") + for key, value in default_config.items(): + custom_logger.info(f"Default Config - {key}: {value}") + + #config = config_manager.load_config() + config = config_manager.load_config().get('scheduler', {}) + global_randomize = config.get('randomize', randomize) + + custom_logger.info(f"Config loaded from yaml {config}") + for key, value in config.items(): + custom_logger.info(f"Config - {key}: {value}") + + # Check if the scheduler config is available in the YAML file + scheduler_config = config.get('scheduler', {}) + if not scheduler_config: + raise ValueError("Scheduler configuration is missing from the config file.") + + for key, value in scheduler_config.items(): + custom_logger.info(f"Scheduler Config before update - {key}: {value}") + for key, value in scheduler_config.items(): + if key in default_config: + default_config[key] = value + custom_logger.info(f"Overriding default config: {key} = {value}") + else: + debug.log(f"Ignoring unknown config option: {key}") + # Now using default_config, updated with valid YAML values + custom_logger.info(f"Final Config after overriding: {default_config}") + + # Example: Reading the randomization flags from the config + randomize = config.get('scheduler', {}).get('randomize', False) + + # Use the get_random_or_default function for each parameter + #if randomize = false, then it checks for each variable for randomize, if true, then that particular option is randomized, with the others using default or config defined values. + sigma_min = get_random_or_default(config, 'sigma_min', sigma_min, global_randomize) + sigma_max = get_random_or_default(config, 'sigma_max', sigma_max, global_randomize) + start_blend = get_random_or_default(config, 'start_blend', start_blend, global_randomize) + end_blend = get_random_or_default(config, 'end_blend', end_blend, global_randomize) + sharpness = get_random_or_default(config, 'sharpness', sharpness, global_randomize) + early_stopping_threshold = get_random_or_default(config, 'early_stopping', early_stopping_threshold, global_randomize) + update_interval = get_random_or_default(config, 'update_interval', update_interval, global_randomize) + initial_step_size = get_random_or_default(config, 'initial_step', initial_step_size, global_randomize) + final_step_size = get_random_or_default(config, 'final_step', final_step_size, global_randomize) + initial_noise_scale = get_random_or_default(config, 'initial_noise', initial_noise_scale, global_randomize) + final_noise_scale = get_random_or_default(config, 'final_noise', final_noise_scale, global_randomize) + smooth_blend_factor = get_random_or_default(config, 'smooth_blend_factor', smooth_blend_factor, global_randomize) + step_size_factor = get_random_or_default(config, 'step_size_factor', step_size_factor, global_randomize) + noise_scale_factor = get_random_or_default(config, 'noise_scale_factor', noise_scale_factor, global_randomize) + + + # Expand sigma_max slightly to account for smoother transitions + sigma_max = sigma_max * 1.1 + custom_logger.info(f"Using device: {device}") + # Generate sigma sequences using Karras and Exponential methods + sigmas_karras = get_sigmas_karras(n=n, sigma_min=sigma_min, sigma_max=sigma_max, device=device) + sigmas_exponential = get_sigmas_exponential(n=n, sigma_min=sigma_min, sigma_max=sigma_max, device=device) + config = config_manager.config_data.get('scheduler', {}) + # Match lengths of sigma sequences + target_length = min(len(sigmas_karras), len(sigmas_exponential)) + sigmas_karras = sigmas_karras[:target_length] + sigmas_exponential = sigmas_exponential[:target_length] + + custom_logger.info(f"Generated sigma sequences. Karras: {sigmas_karras}, Exponential: {sigmas_exponential}") + if sigmas_karras is None: + raise ValueError("Sigmas Karras:{sigmas_karras} Failed to generate or assign sigmas correctly.") + if sigmas_exponential is None: + raise ValueError("Sigmas Exponential: {sigmas_exponential} Failed to generate or assign sigmas correctly.") + #sigmas_karras = torch.zeros(n).to(device) + #sigmas_exponential = torch.zeros(n).to(device) + try: + pass + except Exception as e: + error_log(f"Error generating sigmas: {e}") + finally: + # Stop the observer when done + observer.stop() + observer.join() + + # Define progress and initialize blend factor + progress = torch.linspace(0, 1, len(sigmas_karras)).to(device) + custom_logger.info(f"Progress created {progress}") + custom_logger.info(f"Progress Using device: {device}") + + sigs = torch.zeros_like(sigmas_karras).to(device) + custom_logger.info(f"Sigs created {sigs}") + custom_logger.info(f"Sigs Using device: {device}") + + # Iterate through each step, dynamically adjust blend factor, step size, and noise scaling + for i in range(len(sigmas_karras)): + # Adaptive step size and blend factor calculations + step_size = initial_step_size * (1 - progress[i]) + final_step_size * progress[i] * step_size_factor # 0.8 default value Adjusted to avoid over-smoothing + custom_logger.info(f"Step_size created {step_size}" ) + dynamic_blend_factor = start_blend * (1 - progress[i]) + end_blend * progress[i] + custom_logger.info(f"Dynamic_blend_factor created {dynamic_blend_factor}" ) + noise_scale = initial_noise_scale * (1 - progress[i]) + final_noise_scale * progress[i] * noise_scale_factor # 0.9 default value Adjusted to keep more variation + custom_logger.info(f"noise_scale created {noise_scale}" ) + + # Calculate smooth blending between the two sigma sequences + smooth_blend = torch.sigmoid((dynamic_blend_factor - 0.5) * smooth_blend_factor) # Increase scaling factor to smooth transitions more + custom_logger.info(f"smooth_blend created {smooth_blend}" ) + + # Compute blended sigma values + blended_sigma = sigmas_karras[i] * (1 - smooth_blend) + sigmas_exponential[i] * smooth_blend + custom_logger.info(f"blended_sigma created {blended_sigma}" ) + + # Apply step size and noise scaling + sigs[i] = blended_sigma * step_size * noise_scale + + # Optional: Adaptive sharpening based on sigma values + sharpen_mask = torch.where(sigs < sigma_min * 1.5, sharpness, 1.0).to(device) + custom_logger.info(f"sharpen_mask created {sharpen_mask} with device {device}" ) + sigs = sigs * sharpen_mask + + # Implement early stop criteria based on sigma convergence + change = torch.abs(sigs[1:] - sigs[:-1]) + if torch.all(change < early_stopping_threshold): + custom_logger.info("Early stopping criteria met." ) + return sigs[:len(change) + 1].to(device) + + if torch.isnan(sigs).any() or torch.isinf(sigs).any(): + raise ValueError("Invalid sigma values detected (NaN or Inf).") + + return sigs.to(device) diff --git a/modules/simple_kes_scheduler.yaml b/modules/simple_kes_scheduler.yaml new file mode 100644 index 00000000000..d839f48af9d --- /dev/null +++ b/modules/simple_kes_scheduler.yaml @@ -0,0 +1,146 @@ +scheduler: + + #Optionally print to a log file for debugging. If false, debug is turned off, and no log file will be created. + #config options: true or false + debug: false + + # The minimum value for the noise level (sigma) during image generation. + # Decreasing this value makes the image clearer but less detailed. + # Increasing it makes the image noisier but potentially more artistic or abstract. + sigma_min: 0.01 # Default: 0.01, Suggested range: 0.01 - 0.1 + + # The maximum value for the noise level (sigma) during image generation. + # Increasing this value can create more variation in the image details. + # Lower values keep the image more stable and less noisy. + sigma_max: 50 # Default: 50, Suggested range:10 - 60 + + # The device used for running the scheduler. If you have a GPU, set this to "cuda". + # Otherwise, use "cpu", but note that it will be significantly slower. + #device: "cuda" # Options: "cuda" (GPU) or "cpu" (processor) + + # Initial blend factor between Karras and Exponential noise methods. + # A higher initial blend makes the image sharper at the start. + # A lower initial blend makes the image smoother early on. + start_blend: 0.1 # Default: 0.1, Suggested range: 0.05 - 0.2 + + # Final blend factor between Karras and Exponential noise methods. + # Higher values blend more noise at the end, possibly adding more detail. + # Lower values blend less noise for smoother, simpler images at the end. + end_blend: 0.5 # Default: 0.5, Suggested range: 0.4 - 0.6 + + # Sharpening factor applied to images during generation. + # Higher values increase sharpness but can add unwanted artifacts. + # Lower values reduce sharpness but may make the image look blurry. + sharpness: 0.95 # Default: 0.95, Suggested range: 0.8 - 1.0 + + # Early stopping threshold for stopping the image generation when changes between steps are minimal. + # Lower values stop early, saving time, but might produce incomplete images. + # Higher values take longer but may give more detailed results. + early_stopping_threshold: 0.01 # Default: 0.01, Suggested range: 0.005 - 0.02 + + # The number of steps between updates of the blend factor. + # Smaller values update the blend more frequently for smoother transitions. + # Larger values update the blend less frequently for faster processing. + update_interval: 10 # Default: 10, Suggested range: 5 - 15 + + # Initial step size, which controls how quickly the image evolves early on. + # Higher values make big changes at the start, possibly generating faster but less refined images. + # Lower values make smaller changes, giving more control over details. + initial_step_size: 0.9 # Default, 0.9, Suggested range: 0.5 - 1.0 + + # Final step size, which controls how much the image changes towards the end. + # Higher values keep details more flexible until the end, which may add complexity. + # Lower values lock the details earlier, making the image simpler. + final_step_size: 0.2 # Default: 0.2, Suggested range: 0.1 - 0.3 + + # Initial noise scaling applied to the image generation process. + # Higher values add more noise early on, making the initial image more random. + # Lower values reduce noise early on, leading to a smoother initial image. + initial_noise_scale: 1.25 # Default, 1.25, Suggested range: 1.0 - 1.5 + + # Final noise scaling applied at the end of the image generation. + # Higher values add noise towards the end, possibly adding fine detail. + # Lower values reduce noise towards the end, making the final image smoother. + final_noise_scale: 0.8 # Default, 0.8, Suggested range: 0.6 - 1.0 + + + smooth_blend_factor: 11 #Default: 11, try 6 for more variation + step_size_factor: 0.75 #suggested value (0.8) to avoid oversmoothing + noise_scale_factor: 0.95 #suggested value (0.9) to add more variation + + + # Enables global randomization. + # If true, all parameters are randomized within specified min/max ranges. + # If false, individual parameters with _rand flags set to true will still be randomized. + randomize: true + + #Sigma values typically start very small. Lowering this could allow more gradual noise reduction. Too large would overwhelm the process. + sigma_min_rand: false + sigma_min_rand_min: 0.001 + sigma_min_rand_max: 0.05 + + #Sigma max controls the upper limit of the noise. A lower minimum could allow faster convergence, while a higher max gives more flexibility for noisier images. + sigma_max_rand: false + sigma_max_rand_min: 10 + sigma_max_rand_max: 60 + + #Start blend controls how strongly Karras and Exponential are blended at the start. A slightly lower value introduces more variety in the blending at the beginning. + start_blend_rand: false + start_blend_rand_min: 0.05 + start_blend_rand_max: 0.2 + + # End blend affects how much the blending changes towards the end. Increasing the upper limit would allow more variation. + end_blend_rand: false + end_blend_rand_min: 0.4 + end_blend_rand_max: 0.6 + + # Sharpness controls detail retention. You wouldn’t want to lower it too much, as it might lose detail. + sharpness_rand: false + sharpness_rand_min: 0.85 + sharpness_rand_max: 1.0 + + #A smaller early stopping threshold could lead to earlier stopping if the changes between sigma steps become too small, while the upper value would prevent early stopping until larger changes occur. + early_stopping_rand: false + early_stopping_rand_min: 0.001 + early_stopping_rand_max: 0.02 + + #Update intervals affect how frequently blending factors are updated. More frequent updates allow more flexibility in blending. + update_interval_rand: false + update_interval_rand_min: 5 + update_interval_rand_max: 10 + + # The initial step size defines how large the steps are at the start. A slightly smaller value introduces more gradual transitions. + initial_step_rand: false + initial_step_rand_min: 0.7 + initial_step_rand_max: 1.0 + + # The final step size defines how small the steps become towards the end. A slightly larger range gives more control over the final convergence. + final_step_rand: false + final_step_rand_min: 0.1 + final_step_rand_max: 0.3 + + #Initial noise scale defines how much noise to introduce initially. Larger values make the process start with more randomness, while smaller values keep it controlled. + initial_noise_rand: false + initial_noise_rand_min: 1.0 + initial_noise_rand_max: 1.5 + + # Final noise scale affects how much noise is reduced at the end. A lower minimum allows more noise to persist, while a higher maximum ensures full convergence. + final_noise_rand: false + final_noise_rand_min: 0.6 + final_noise_rand_max: 1.0 + + #The smooth blend factor controls how aggressively the blending is smoothed. Lower values allow more abrupt blending changes, while higher values give smoother transitions. + smooth_blend_factor_rand: false + smooth_blend_factor_rand_min: 6 + smooth_blend_factor_rand_max: 11 + + #Step size factor adjusts the step size dynamically to avoid oversmoothing. A lower minimum increases variety, while a higher max provides smoother results. + step_size_factor_rand: false + step_size_factor_rand_min: 0.65 + step_size_factor_rand_max: 0.85 + + # Noise scale factor controls how noise is scaled throughout the steps. A slightly lower minimum adds more variety, while keeping the maximum value near the suggested ensures more uniform results. + noise_scale_factor_rand: false + noise_scale_factor_rand_min: 0.75 + noise_scale_factor_rand_max: 0.95 + \ No newline at end of file