-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
129 lines (109 loc) · 4.06 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import torch
import torch.nn as nn
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
# Encoder
class Encoder(nn.Module):
def __init__(self, opt):
super(Encoder, self).__init__()
# encoder_layer_sizes (default: [8192, 4096])
layer_sizes = opt.encoder_layer_sizes
latent_size = opt.latent_size
layer_sizes[0] += latent_size
self.fc1 = nn.Linear(layer_sizes[0], layer_sizes[-1])
self.fc3 = nn.Linear(layer_sizes[-1], latent_size*2)
self.lrelu = nn.LeakyReLU(0.2, True)
self.linear_means = nn.Linear(latent_size*2, latent_size)
self.linear_log_var = nn.Linear(latent_size*2, latent_size)
self.apply(weights_init)
def forward(self, x, c=None):
if c is not None: x = torch.cat((x, c), dim=-1)
x = self.lrelu(self.fc1(x))
x = self.lrelu(self.fc3(x))
means = self.linear_means(x)
log_vars = self.linear_log_var(x)
return means, log_vars
# Decoder/Generator
class Generator(nn.Module):
def __init__(self, opt):
super(Generator, self).__init__()
layer_sizes = opt.decoder_layer_sizes
latent_size = opt.latent_size
input_size = latent_size * 2
self.fc1 = nn.Linear(input_size, layer_sizes[0])
self.fc3 = nn.Linear(layer_sizes[0], layer_sizes[1])
self.lrelu = nn.LeakyReLU(0.2, True)
self.sigmoid = nn.Sigmoid()
self.apply(weights_init)
def _forward(self, z, c=None):
z = torch.cat((z, c), dim=-1)
x1 = self.lrelu(self.fc1(z))
x = self.sigmoid(self.fc3(x1))
self.out = x1
return x
def forward(self, z, a1=None, c=None, feedback_layers=None):
if feedback_layers is None:
return self._forward(z, c)
else:
z = torch.cat((z, c), dim=-1)
x1 = self.lrelu(self.fc1(z))
feedback_out = x1 + a1 * feedback_layers
x = self.sigmoid(self.fc3(feedback_out))
return x
# conditional discriminator for inductive
class Discriminator_D1(nn.Module):
def __init__(self, opt):
super(Discriminator_D1, self).__init__()
self.fc1 = nn.Linear(opt.resSize + opt.attSize, opt.ndh)
self.fc2 = nn.Linear(opt.ndh, 1)
self.lrelu = nn.LeakyReLU(0.2, True)
self.apply(weights_init)
def forward(self, x, att):
h = torch.cat((x, att), 1)
self.hidden = self.lrelu(self.fc1(h))
h = self.fc2(self.hidden)
return h
# Feedback Modules
class Feedback(nn.Module):
def __init__(self,opt):
super(Feedback, self).__init__()
self.fc1 = nn.Linear(opt.ngh, opt.ngh)
self.fc2 = nn.Linear(opt.ngh, opt.ngh)
self.lrelu = nn.LeakyReLU(0.2, True)
self.apply(weights_init)
def forward(self,x):
self.x1 = self.lrelu(self.fc1(x))
h = self.lrelu(self.fc2(self.x1))
return h
class AttDec(nn.Module):
def __init__(self, opt, attSize):
super(AttDec, self).__init__()
self.embedSz = 0
self.fc1 = nn.Linear(opt.resSize + self.embedSz, opt.ngh)
self.fc3 = nn.Linear(opt.ngh, attSize)
self.lrelu = nn.LeakyReLU(0.2, True)
self.hidden = None
self.sigmoid = None
self.apply(weights_init)
def forward(self, feat, att=None):
h = feat
if self.embedSz > 0:
assert att is not None, 'Conditional Decoder requires attribute input'
h = torch.cat((feat, att), 1)
self.hidden = self.lrelu(self.fc1(h))
h = self.fc3(self.hidden)
if self.sigmoid is not None:
h = self.sigmoid(h)
else:
h = h/h.pow(2).sum(1).sqrt().unsqueeze(1).expand(h.size(0), h.size(1))
self.out = h
return h
def getLayersOutDet(self):
# used at synthesis time and feature transformation
return self.hidden.detach()