forked from thomasahle/sunfish
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sunfish.py
388 lines (342 loc) · 14.7 KB
/
sunfish.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
#!/usr/bin/env pypy
# -*- coding: utf-8 -*-
from __future__ import print_function
import sys
from itertools import count
from collections import Counter, OrderedDict, namedtuple
# The table size is the maximum number of elements in the transposition table.
TABLE_SIZE = 1e6
# This constant controls how much time we spend on looking for optimal moves.
NODES_SEARCHED = 1e4
# Mate value must be greater than 8*queen + 2*(rook+knight+bishop)
# King value is set to twice this value such that if the opponent is
# 8 queens up, but we got the king, we still exceed MATE_VALUE.
MATE_VALUE = 30000
# Our board is represented as a 120 character string. The padding allows for
# fast detection of moves that don't stay within the board.
A1, H1, A8, H8 = 91, 98, 21, 28
initial = (
' \n' # 0 - 9
' \n' # 10 - 19
' rnbqkbnr\n' # 20 - 29
' pppppppp\n' # 30 - 39
' ........\n' # 40 - 49
' ........\n' # 50 - 59
' ........\n' # 60 - 69
' ........\n' # 70 - 79
' PPPPPPPP\n' # 80 - 89
' RNBQKBNR\n' # 90 - 99
' \n' # 100 -109
' ' # 110 -119
)
###############################################################################
# Move and evaluation tables
###############################################################################
N, E, S, W = -10, 1, 10, -1
directions = {
'P': (N, 2*N, N+W, N+E),
'N': (2*N+E, N+2*E, S+2*E, 2*S+E, 2*S+W, S+2*W, N+2*W, 2*N+W),
'B': (N+E, S+E, S+W, N+W),
'R': (N, E, S, W),
'Q': (N, E, S, W, N+E, S+E, S+W, N+W),
'K': (N, E, S, W, N+E, S+E, S+W, N+W)
}
pst = {
'P': (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 198, 198, 198, 198, 198, 198, 198, 198, 0,
0, 178, 198, 198, 198, 198, 198, 198, 178, 0,
0, 178, 198, 198, 198, 198, 198, 198, 178, 0,
0, 178, 198, 208, 218, 218, 208, 198, 178, 0,
0, 178, 198, 218, 238, 238, 218, 198, 178, 0,
0, 178, 198, 208, 218, 218, 208, 198, 178, 0,
0, 178, 198, 198, 198, 198, 198, 198, 178, 0,
0, 198, 198, 198, 198, 198, 198, 198, 198, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
'B': (
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 797, 824, 817, 808, 808, 817, 824, 797, 0,
0, 814, 841, 834, 825, 825, 834, 841, 814, 0,
0, 818, 845, 838, 829, 829, 838, 845, 818, 0,
0, 824, 851, 844, 835, 835, 844, 851, 824, 0,
0, 827, 854, 847, 838, 838, 847, 854, 827, 0,
0, 826, 853, 846, 837, 837, 846, 853, 826, 0,
0, 817, 844, 837, 828, 828, 837, 844, 817, 0,
0, 792, 819, 812, 803, 803, 812, 819, 792, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
'N': (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 627, 762, 786, 798, 798, 786, 762, 627, 0,
0, 763, 798, 822, 834, 834, 822, 798, 763, 0,
0, 817, 852, 876, 888, 888, 876, 852, 817, 0,
0, 797, 832, 856, 868, 868, 856, 832, 797, 0,
0, 799, 834, 858, 870, 870, 858, 834, 799, 0,
0, 758, 793, 817, 829, 829, 817, 793, 758, 0,
0, 739, 774, 798, 810, 810, 798, 774, 739, 0,
0, 683, 718, 742, 754, 754, 742, 718, 683, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
'R': (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1258, 1263, 1268, 1272, 1272, 1268, 1263, 1258, 0,
0, 1258, 1263, 1268, 1272, 1272, 1268, 1263, 1258, 0,
0, 1258, 1263, 1268, 1272, 1272, 1268, 1263, 1258, 0,
0, 1258, 1263, 1268, 1272, 1272, 1268, 1263, 1258, 0,
0, 1258, 1263, 1268, 1272, 1272, 1268, 1263, 1258, 0,
0, 1258, 1263, 1268, 1272, 1272, 1268, 1263, 1258, 0,
0, 1258, 1263, 1268, 1272, 1272, 1268, 1263, 1258, 0,
0, 1258, 1263, 1268, 1272, 1272, 1268, 1263, 1258, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
'Q': (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 0,
0, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 0,
0, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 0,
0, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 0,
0, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 0,
0, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 0,
0, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 0,
0, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 2529, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
'K': (0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 60098, 60132, 60073, 60025, 60025, 60073, 60132, 60098, 0,
0, 60119, 60153, 60094, 60046, 60046, 60094, 60153, 60119, 0,
0, 60146, 60180, 60121, 60073, 60073, 60121, 60180, 60146, 0,
0, 60173, 60207, 60148, 60100, 60100, 60148, 60207, 60173, 0,
0, 60196, 60230, 60171, 60123, 60123, 60171, 60230, 60196, 0,
0, 60224, 60258, 60199, 60151, 60151, 60199, 60258, 60224, 0,
0, 60287, 60321, 60262, 60214, 60214, 60262, 60321, 60287, 0,
0, 60298, 60332, 60273, 60225, 60225, 60273, 60332, 60298, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
}
###############################################################################
# Chess logic
###############################################################################
class Position(namedtuple('Position', 'board score wc bc ep kp')):
""" A state of a chess game
board -- a 120 char representation of the board
score -- the board evaluation
wc -- the castling rights
bc -- the opponent castling rights
ep - the en passant square
kp - the king passant square
"""
def genMoves(self):
# For each of our pieces, iterate through each possible 'ray' of moves,
# as defined in the 'directions' map. The rays are broken e.g. by
# captures or immediately in case of pieces such as knights.
for i, p in enumerate(self.board):
if not p.isupper(): continue
for d in directions[p]:
for j in count(i+d, d):
q = self.board[j]
# Stay inside the board
if self.board[j].isspace(): break
# Castling
if i == A1 and q == 'K' and self.wc[0]: yield (j, j-2)
if i == H1 and q == 'K' and self.wc[1]: yield (j, j+2)
# No friendly captures
if q.isupper(): break
# Special pawn stuff
if p == 'P' and d in (N+W, N+E) and q == '.' and j not in (self.ep, self.kp): break
if p == 'P' and d in (N, 2*N) and q != '.': break
if p == 'P' and d == 2*N and (i < A1+N or self.board[i+N] != '.'): break
# Move it
yield (i, j)
# Stop crawlers from sliding
if p in ('P', 'N', 'K'): break
# No sliding after captures
if q.islower(): break
def rotate(self):
return Position(
self.board[::-1].swapcase(), -self.score,
self.bc, self.wc, 119-self.ep, 119-self.kp)
def move(self, move):
i, j = move
p, q = self.board[i], self.board[j]
put = lambda board, i, p: board[:i] + p + board[i+1:]
# Copy variables and reset ep and kp
board = self.board
wc, bc, ep, kp = self.wc, self.bc, 0, 0
score = self.score + self.value(move)
# Actual move
board = put(board, j, board[i])
board = put(board, i, '.')
# Castling rights
if i == A1: wc = (False, wc[1])
if i == H1: wc = (wc[0], False)
if j == A8: bc = (bc[0], False)
if j == H8: bc = (False, bc[1])
# Castling
if p == 'K':
wc = (False, False)
if abs(j-i) == 2:
kp = (i+j)//2
board = put(board, A1 if j < i else H1, '.')
board = put(board, kp, 'R')
# Special pawn stuff
if p == 'P':
if A8 <= j <= H8:
board = put(board, j, 'Q')
if j - i == 2*N:
ep = i + N
if j - i in (N+W, N+E) and q == '.':
board = put(board, j+S, '.')
# We rotate the returned position, so it's ready for the next player
return Position(board, score, wc, bc, ep, kp).rotate()
def value(self, move):
i, j = move
p, q = self.board[i], self.board[j]
# Actual move
score = pst[p][j] - pst[p][i]
# Capture
if q.islower():
score += pst[q.upper()][j]
# Castling check detection
if abs(j-self.kp) < 2:
score += pst['K'][j]
# Castling
if p == 'K' and abs(i-j) == 2:
score += pst['R'][(i+j)//2]
score -= pst['R'][A1 if j < i else H1]
# Special pawn stuff
if p == 'P':
if A8 <= j <= H8:
score += pst['Q'][j] - pst['P'][j]
if j == self.ep:
score += pst['P'][j+S]
return score
Entry = namedtuple('Entry', 'depth score gamma move')
tp = OrderedDict()
###############################################################################
# Search logic
###############################################################################
nodes = 0
def bound(pos, gamma, depth):
""" returns s(pos) <= r < gamma if s(pos) < gamma
returns s(pos) >= r >= gamma if s(pos) >= gamma """
global nodes; nodes += 1
# Look in the table if we have already searched this position before.
# We use the table value if it was done with at least as deep a search
# as ours, and the gamma value is compatible.
entry = tp.get(pos)
if entry is not None and entry.depth >= depth and (
entry.score < entry.gamma and entry.score < gamma or
entry.score >= entry.gamma and entry.score >= gamma):
return entry.score
# Stop searching if we have won/lost.
if abs(pos.score) >= MATE_VALUE:
return pos.score
# Null move. Is also used for stalemate checking
nullscore = -bound(pos.rotate(), 1-gamma, depth-3) if depth > 0 else pos.score
#nullscore = -MATE_VALUE*3 if depth > 0 else pos.score
if nullscore >= gamma:
return nullscore
# We generate all possible, pseudo legal moves and order them to provoke
# cuts. At the next level of the tree we are going to minimize the score.
# This can be shown equal to maximizing the negative score, with a slightly
# adjusted gamma value.
best, bmove = -3*MATE_VALUE, None
for move in sorted(pos.genMoves(), key=pos.value, reverse=True):
# We check captures with the value function, as it also contains ep and kp
if depth <= 0 and pos.value(move) < 150:
break
score = -bound(pos.move(move), 1-gamma, depth-1)
if score > best:
best = score
bmove = move
if score >= gamma:
break
# If there are no captures, or just not any good ones, stand pat
if depth <= 0 and best < nullscore:
return nullscore
# Check for stalemate. If best move loses king, but not doing anything
# would save us. Not at all a perfect check.
if depth > 0 and best <= -MATE_VALUE is None and nullscore > -MATE_VALUE:
best = 0
# We save the found move together with the score, so we can retrieve it in
# the play loop. We also trim the transposition table in FILO order.
# We prefer fail-high moves, as they are the ones we can build our pv from.
if entry is None or depth >= entry.depth and best >= gamma:
tp[pos] = Entry(depth, best, gamma, bmove)
if len(tp) > TABLE_SIZE:
tp.pop()
return best
def search(pos, maxn=NODES_SEARCHED):
""" Iterative deepening MTD-bi search """
global nodes; nodes = 0
# We limit the depth to some constant, so we don't get a stack overflow in
# the end game.
for depth in range(1, 99):
# The inner loop is a binary search on the score of the position.
# Inv: lower <= score <= upper
# However this may be broken by values from the transposition table,
# as they don't have the same concept of p(score). Hence we just use
# 'lower < upper - margin' as the loop condition.
lower, upper = -3*MATE_VALUE, 3*MATE_VALUE
while lower < upper - 3:
gamma = (lower+upper+1)//2
score = bound(pos, gamma, depth)
if score >= gamma:
lower = score
if score < gamma:
upper = score
# print("Searched %d nodes. Depth %d. Score %d(%d/%d)" % (nodes, depth, score, lower, upper))
# We stop deepening if the global N counter shows we have spent too
# long, or if we have already won the game.
if nodes >= maxn or abs(score) >= MATE_VALUE:
break
# If the game hasn't finished we can retrieve our move from the
# transposition table.
entry = tp.get(pos)
if entry is not None:
return entry.move, score
return None, score
###############################################################################
# User interface
###############################################################################
# Python 2 compatability
if sys.version_info[0] == 2:
input = raw_input
def parse(c):
fil, rank = ord(c[0]) - ord('a'), int(c[1]) - 1
return A1 + fil - 10*rank
def render(i):
rank, fil = divmod(i - A1, 10)
return chr(fil + ord('a')) + str(-rank + 1)
def main():
pos = Position(initial, 0, (True,True), (True,True), 0, 0)
while True:
# We add some spaces to the board before we print it.
# That makes it more readable and pleasing.
print(' '.join(pos.board))
# We query the user until she enters a legal move.
move = None
while move not in pos.genMoves():
crdn = input("Your move: ")
move = parse(crdn[0:2]), parse(crdn[2:4])
pos = pos.move(move)
# After our move we rotate the board and print it again.
# This allows us to see the effect of our move.
print(' '.join(pos.rotate().board))
# Fire up the engine to look for a move.
move, score = search(pos)
if score <= -MATE_VALUE:
print("You won")
break
if score >= MATE_VALUE:
print("You lost")
break
# The black player moves from a rotated position, so we have to
# 'back rotate' the move before printing it.
print("My move:", render(119-move[0]) + render(119-move[1]))
pos = pos.move(move)
if __name__ == '__main__':
main()