-
Notifications
You must be signed in to change notification settings - Fork 351
/
Copy pathgenerate_caps.py
158 lines (134 loc) · 5.41 KB
/
generate_caps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
"""
Sampling script for attention models
Works on CPU with support for multi-process
"""
import argparse
import numpy
import cPickle as pkl
from capgen import build_sampler, gen_sample, \
load_params, \
init_params, \
init_tparams, \
get_dataset \
from multiprocessing import Process, Queue
# single instance of a sampling process
def gen_model(queue, rqueue, pid, model, options, k, normalize, word_idict, sampling):
import theano
from theano import tensor
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
trng = RandomStreams(1234)
# this is zero indicate we are not using dropout in the graph
use_noise = theano.shared(numpy.float32(0.), name='use_noise')
# get the parameters
params = init_params(options)
params = load_params(model, params)
tparams = init_tparams(params)
# build the sampling computational graph
# see capgen.py for more detailed explanations
f_init, f_next = build_sampler(tparams, options, use_noise, trng, sampling=sampling)
def _gencap(cc0):
sample, score = gen_sample(tparams, f_init, f_next, cc0, options,
trng=trng, k=k, maxlen=200, stochastic=False)
# adjust for length bias
if normalize:
lengths = numpy.array([len(s) for s in sample])
score = score / lengths
sidx = numpy.argmin(score)
return sample[sidx]
while True:
req = queue.get()
# exit signal
if req is None:
break
idx, context = req[0], req[1]
print pid, '-', idx
seq = _gencap(context)
rqueue.put((idx, seq))
return
def main(model, saveto, k=5, normalize=False, zero_pad=False, n_process=5, datasets='dev,test', sampling=False, pkl_name=None):
# load model model_options
if pkl_name is None:
pkl_name = model
with open('%s.pkl'% pkl_name, 'rb') as f:
options = pkl.load(f)
# fetch data, skip ones we aren't using to save time
load_data, prepare_data = get_dataset(options['dataset'])
_, valid, test, worddict = load_data(load_train=False, load_dev=True if 'dev' in datasets else False,
load_test=True if 'test' in datasets else False)
# <eos> means end of sequence (aka periods), UNK means unknown
word_idict = dict()
for kk, vv in worddict.iteritems():
word_idict[vv] = kk
word_idict[0] = '<eos>'
word_idict[1] = 'UNK'
# create processes
queue = Queue()
rqueue = Queue()
processes = [None] * n_process
for midx in xrange(n_process):
processes[midx] = Process(target=gen_model,
args=(queue,rqueue,midx,model,options,k,normalize,word_idict, sampling))
processes[midx].start()
# index -> words
def _seqs2words(caps):
capsw = []
for cc in caps:
ww = []
for w in cc:
if w == 0:
break
ww.append(word_idict[w])
capsw.append(' '.join(ww))
return capsw
# unsparsify, reshape, and queue
def _send_jobs(contexts):
for idx, ctx in enumerate(contexts):
cc = ctx.todense().reshape([14*14,512])
if zero_pad:
cc0 = numpy.zeros((cc.shape[0]+1, cc.shape[1])).astype('float32')
cc0[:-1,:] = cc
else:
cc0 = cc
queue.put((idx, cc0))
# retrieve caption from process
def _retrieve_jobs(n_samples):
caps = [None] * n_samples
for idx in xrange(n_samples):
resp = rqueue.get()
caps[resp[0]] = resp[1]
if numpy.mod(idx, 10) == 0:
print 'Sample ', (idx+1), '/', n_samples, ' Done'
return caps
ds = datasets.strip().split(',')
# send all the features for the various datasets
for dd in ds:
if dd == 'dev':
print 'Development Set...',
_send_jobs(valid[1])
caps = _seqs2words(_retrieve_jobs(len(valid[1])))
with open(saveto+'.dev.txt', 'w') as f:
print >>f, '\n'.join(caps)
print 'Done'
if dd == 'test':
print 'Test Set...',
_send_jobs(test[1])
caps = _seqs2words(_retrieve_jobs(len(test[1])))
with open(saveto+'.test.txt', 'w') as f:
print >>f, '\n'.join(caps)
print 'Done'
# end processes
for midx in xrange(n_process):
queue.put(None)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-k', type=int, default=1)
parser.add_argument('-sampling', action="store_true", default=False) # this only matters for hard attention
parser.add_argument('-p', type=int, default=5, help="number of processes to use")
parser.add_argument('-n', action="store_true", default=False)
parser.add_argument('-z', action="store_true", default=False)
parser.add_argument('-d', type=str, default='dev,test')
parser.add_argument('-pkl_name', type=str, default=None, help="name of pickle file (without the .pkl)")
parser.add_argument('model', type=str)
parser.add_argument('saveto', type=str)
args = parser.parse_args()
main(args.model, args.saveto, k=args.k, zero_pad=args.z, pkl_name=args.pkl_name, n_process=args.p, normalize=args.n, datasets=args.d, sampling=args.sampling)