-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathidentify.py
executable file
·1106 lines (903 loc) · 48.6 KB
/
identify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
#-*- coding: utf-8 -*-
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import
from builtins import input
from builtins import zip
from builtins import range
from builtins import object
import sys
from typing import cast, Dict, List, Iterable
# math
import numpy as np
import numpy.linalg as la
import scipy
import scipy.linalg as sla
import scipy.stats as stats
# plotting
import matplotlib.pyplot as plt
# kinematics, dynamics and URDF reading
import iDynTree; iDynTree.init_helpers(); iDynTree.init_numpy_helpers()
# submodules
from identification.model import Model
from identification.data import Data
from identification.output import OutputConsole
from identification import sdp
import identification.helpers as helpers
from colorama import Fore
from IPython import embed
np.core.arrayprint._line_width = 160
# Referenced papers:
# Gautier, 1991: Numerical Calculation of the base Inertial Parameters of Robots
# Pham, 1991: Essential Parameters of Robots
# Zak et. al, 1994: Application of the Weighted Least Squares Parameter Estimation Method to the
# Robot Calibration
# Venture et al, 2009: A numerical method for choosing motions with optimal excitation properties
# for identification of biped dynamics
# Jubien, 2014: Dynamic identification of the Kuka LWR robot using motor torques and joint torque
# sensors data
# Sousa, 2014: Physical feasibility of robot base inertial parameter identification: A linear matrix
# inequality approach
class Identification(object):
def __init__(self, opt, urdf_file, urdf_file_real, measurements_files, regressor_file, validation_file):
# type: (Dict, str, str, str, str, str) -> None
self.opt = opt
# some additional options (experiments)
# in order ot get regressor and base equations, use basis projection matrix. Otherwise use
# permutation from QR directly (Gautier/Sousa method)
self.opt['useBasisProjection'] = 0
# in case projection is used, orthogonalize the basis matrix (SDP estimation seem to work
# more stable that way)
self.opt['orthogonalizeBasis'] = 1
# add regularization term to SDP identification that minimized CAD distance for non-identifiable params
self.opt['useRegressorRegularization'] = 1
self.opt['regularizationFactor'] = 1000.0 #proportion of distance term
# if using fixed base dynamics, remove first link that is the fixed base which should completely
# not be identifiable and not be part of equations (as it does not move)
self.opt['deleteFixedBase'] = 1
# end additional config flags
# load model description and initialize
self.model = Model(self.opt, urdf_file, regressor_file)
# load measurements
self.data = Data(self.opt)
if measurements_files:
self.data.init_from_files(measurements_files)
self.paramHelpers = helpers.ParamHelpers(self.model, self.opt)
self.urdfHelpers = helpers.URDFHelpers(self.paramHelpers, self.model, self.opt)
self.sdp = sdp.SDP(self)
if self.opt['constrainUsingNL']:
from identification.nlopt import NLOPT
self.nlopt = NLOPT(self)
self.tauEstimated = None # type: np._ArrayLike
self.res_error = 100 # last residual error in percent
self.urdf_file_real = urdf_file_real
if self.urdf_file_real:
dc = iDynTree.DynamicsRegressorGenerator()
if not dc.loadRobotAndSensorsModelFromFile(urdf_file_real):
sys.exit()
tmp = iDynTree.VectorDynSize(self.model.num_model_params)
#set regressor, otherwise getModelParameters segfaults
dc.loadRegressorStructureFromString(self.model.regrXml)
dc.getModelParameters(tmp)
self.xStdReal = tmp.toNumPy()
#add some zeros for friction
self.xStdReal = np.concatenate((self.xStdReal, np.zeros(self.model.num_all_params-self.model.num_model_params)))
if self.opt['identifyFriction']:
self.paramHelpers.addFrictionFromURDF(self.model, self.urdf_file_real, self.xStdReal)
self.validation_file = validation_file
progress_inst = helpers.Progress(opt)
self.progress = progress_inst.progress
def estimateRegressorTorques(self, estimateWith=None, print_stats=False):
# type: (str, bool) -> None
""" get torque estimations using regressor, prepare for plotting """
if not estimateWith:
# use global parameter choice if none is given specifically
estimateWith = self.opt['estimateWith']
# estimate torques with idyntree regressor and different params
if estimateWith == 'urdf':
tauEst = np.dot(self.model.YStd, self.model.xStdModel[self.model.identified_params])
elif estimateWith == 'base_essential':
tauEst = np.dot(self.model.YBase, self.xBase_essential)
elif estimateWith == 'base':
tauEst = np.dot(self.model.YBase, self.model.xBase)
elif estimateWith in ['std', 'std_direct']:
tauEst = np.dot(self.model.YStd, self.model.xStd)
else:
print("unknown type of parameters: {}".format(self.opt['estimateWith']))
if self.opt['floatingBase']:
fb = 6
else:
fb = 0
if self.opt['floatingBase']:
# the base forces are expressed in the base frame for the regressor, so transform them
# to world frame (inverse dynamics use world frame)
'''
pos = iDynTree.Position.Zero()
tau_2dim = tauEst.reshape((self.data.num_used_samples, self.model.num_dofs+fb))
for i in range(self.data.num_used_samples):
idx = i*(self.opt['skipSamples'])+i
rpy = self.data.samples['base_rpy'][idx]
rot = iDynTree.Rotation.RPY(rpy[0], rpy[1], rpy[2])
world_T_base = iDynTree.Transform(rot, pos).inverse()
to_world = world_T_base.getRotation().toNumPy()
tau_2dim[i, :3] = to_world.dot(tau_2dim[i, :3])
tau_2dim[i, 3:6] = to_world.dot(tau_2dim[i, 3:6])
tauEst = tau_2dim.flatten()
'''
if self.opt['addContacts']:
tauEst += self.model.contactForcesSum
self.tauEstimated = np.reshape(tauEst, (self.data.num_used_samples, self.model.num_dofs + fb))
self.base_error = np.mean(sla.norm(self.model.tauMeasured - self.tauEstimated, axis=1))
# give some data statistics
if print_stats and (self.opt['verbose'] or self.opt['showErrorHistogram'] == 1):
error_per_joint = np.mean(self.model.tauMeasured - self.tauEstimated, axis=1)
#how gaussian is the error of the data vs estimation?
#http://stats.stackexchange.com/questions/62291/can-one-measure-the-degree-of-empirical-data-being-gaussian
if self.opt['verbose'] >= 2:
'''
W, p = stats.shapiro(error)
if p > 0.05:
print("error is normal distributed")
else:
print("error is not normal distributed (p={})".format(p))
print("W: {} (> 0.999 isn't too far from normality)".format(W))
'''
k2, p = stats.mstats.normaltest(error_per_joint)
if p > 0.05:
print("error is normal distributed")
else:
print("error is not normal distributed (p={})".format(p))
print("k2: {} (the closer it is to 0, the closer to normal distributed)".format(k2))
if self.opt['showErrorHistogram'] == 1:
plt.hist(error_per_joint, 50)
plt.title("error histogram")
plt.draw()
plt.show()
# don't show again if we come here later
self.opt['showErrorHistogram'] = 2
# reshape torques into one column per DOF for plotting (NUM_SAMPLES*num_dofsx1) -> (NUM_SAMPLESxnum_dofs)
if estimateWith == 'urdf':
self.tauAPriori = self.tauEstimated
def estimateValidationTorques(self):
""" calculate torques of trajectory from validation measurements and identified params """
# TODO: don't duplicate simulation code
# TODO: get identified params directly into idyntree (new KinDynComputations class does not
# have inverse dynamics yet, so we have to go over a new urdf file for now)
import os
v_data = np.load(self.validation_file)
dynComp = iDynTree.DynamicsComputations()
if self.opt['estimateWith'] == 'urdf':
params = self.model.xStdModel
else:
params = self.model.xStd
outfile = self.model.urdf_file + '.tmp.urdf'
self.urdfHelpers.replaceParamsInURDF(input_urdf=self.model.urdf_file,
output_urdf=outfile,
new_params=params)
if self.opt['useRBDL']:
import rbdl
self.model.rbdlModel = rbdl.loadModel(outfile,
floating_base=self.opt['floatingBase'],
verbose=False)
self.model.rbdlModel.gravity = np.array(self.model.gravity)
else:
dynComp.loadRobotModelFromFile(outfile)
os.remove(outfile)
old_skip = self.opt['skipSamples']
self.opt['skipSamples'] = 8
self.tauEstimatedValidation = None # type: np._ArrayLike
for m_idx in self.progress(range(0, v_data['positions'].shape[0], self.opt['skipSamples'] + 1)):
if self.opt['useRBDL']:
torques = self.model.simulateDynamicsRBDL(v_data, m_idx, None, params)
else:
torques = self.model.simulateDynamicsIDynTree(v_data, m_idx, dynComp, params)
if self.tauEstimatedValidation is None:
self.tauEstimatedValidation = torques
else:
self.tauEstimatedValidation = np.vstack((self.tauEstimatedValidation, torques))
if self.opt['skipSamples'] > 0:
self.tauMeasuredValidation = v_data['torques'][::self.opt['skipSamples'] + 1]
self.Tv = v_data['times'][::self.opt['skipSamples'] + 1]
else:
self.tauMeasuredValidation = v_data['torques']
self.Tv = v_data['times']
# add simulated base forces also to measurements
if self.opt['floatingBase']:
self.tauMeasuredValidation = \
np.concatenate((self.tauEstimatedValidation[:, :6], self.tauMeasuredValidation), axis=1)
#TODO: add contact forces to estimation, so far validation is only correct for fixed-base!
print(Fore.RED+'No proper validation for floating base yet!'+Fore.RESET)
self.opt['skipSamples'] = old_skip
self.val_error = sla.norm(self.tauEstimatedValidation - self.tauMeasuredValidation) \
* 100 / sla.norm(self.tauMeasuredValidation)
print("Relative validation error: {}%".format(self.val_error))
self.val_residual = np.mean(sla.norm(self.tauEstimatedValidation-self.tauMeasuredValidation, axis=1))
print("Absolute validation error: {} Nm".format(self.val_residual))
torque_limits = []
for joint in self.model.jointNames:
torque_limits.append(self.model.limits[joint]['torque'])
self.val_nrms = helpers.getNRMSE(self.tauMeasuredValidation, self.tauEstimatedValidation, limits=torque_limits)
print("NRMS validation error: {}%".format(self.val_nrms))
def getBaseParamsFromParamError(self):
# type: () -> None
self.model.xBase += self.model.xBaseModel # both param vecs link relative linearized
if self.opt['useEssentialParams']:
self.xBase_essential[self.baseEssentialIdx] += self.model.xBaseModel[self.baseEssentialIdx]
def findStdFromBaseParameters(self):
# type: () -> None
'''find std parameter from base parameters (simply projection method)'''
# Note: assumes that xBase is still in error form if using a priori
# i.e. don't call after getBaseParamsFromParamError
# project back to standard parameters
if self.opt['useBasisProjection']:
self.model.xStd = self.model.B.dot(self.model.xBase)
else:
self.model.xStd = la.pinv(self.model.K).dot(self.model.xBase)
# get estimated parameters from estimated error (add a priori knowledge)
if self.opt['useAPriori']:
self.model.xStd += self.model.xStdModel[self.model.identified_params]
def getStdDevForParams(self):
# type: () -> (np._ArrayLike[float])
# this might not be working correctly
if self.opt['useAPriori']:
tauDiff = self.model.tauMeasured - self.tauEstimated
else:
tauDiff = self.tauEstimated
if self.opt['floatingBase']: fb = 6
else: fb = 0
# get relative standard deviation of measurement and modeling error \sigma_{rho}^2
r = self.data.num_used_samples * (self.model.num_dofs + fb)
rho = np.square(sla.norm(tauDiff))
sigma_rho = rho / (r - self.model.num_base_params)
# get standard deviation \sigma_{x} (of the estimated parameter vector x)
C_xx = sigma_rho * (sla.pinv(np.dot(self.model.YBase.T, self.model.YBase)))
sigma_x = np.diag(C_xx)
# get relative standard deviation
p_sigma_x = np.sqrt(sigma_x)
for i in range(0, p_sigma_x.size):
if self.model.xBase[i] != 0:
p_sigma_x[i] /= np.abs(self.model.xBase[i])
return p_sigma_x
def findBaseEssentialParameters(self):
"""
iteratively get essential parameters from previously identified base parameters.
(goal is to get similar influence of all parameters, i.e. decrease condition number by throwing
out parameters that are too sensitive to errors. The remaining params should be estimated with
similar accuracy)
based on Pham, 1991; Gautier, 2013 and Jubien, 2014
"""
with helpers.Timer() as t:
# use mean least squares (actually median least abs) to determine when the error
# introduced by model reduction gets too large
use_error_criterion = 0
# keep current values
xBase_orig = self.model.xBase.copy()
YBase_orig = self.model.YBase.copy()
# count how many params were canceled
b_c = 0
# list of param indices to keep the original indices when deleting columns
base_idx = list(range(0, self.model.num_base_params))
not_essential_idx = list() # type: List[int]
ratio = 0
# get initial errors of estimation
self.estimateRegressorTorques('base')
if not self.opt['useAPriori']:
tauDiff = self.model.tauMeasured - self.tauEstimated
else:
tauDiff = self.tauEstimated
def error_func(tauDiff):
#rho = tauDiff
rho = np.mean(tauDiff, axis=1)
#rho = np.square(la.norm(tauDiff, axis=1))
return rho
error_start = error_func(tauDiff)
if self.opt['verbose']:
W, p = stats.shapiro(error_start)
#k2, p = stats.normaltest(error_start, axis=0)
if np.mean(p) > 0.05:
print("error is normal distributed")
else:
print("error is not normal distributed (p={})".format(p))
if not self.opt['useAPriori']:
pham_percent_start = sla.norm(tauDiff) * 100 / sla.norm(self.tauEstimated)
else:
pham_percent_start = sla.norm(tauDiff) * 100 / sla.norm(self.model.tauMeasured)
print("starting percentual error {}".format(pham_percent_start))
#rho_start = np.square(sla.norm(tauDiff))
p_sigma_x = np.array([0])
has_run_once = 0
# start removing non-essential parameters
while 1:
# get new torque estimation to calc error norm (new estimation with updated parameters)
self.estimateRegressorTorques('base')
prev_p_sigma_x = p_sigma_x
p_sigma_x = self.getStdDevForParams()
print("{} params|".format(self.model.num_base_params - b_c), end=' ')
ratio = np.max(p_sigma_x) / np.min(p_sigma_x)
print("min-max ratio of relative stddevs: {},".format(ratio), end=' ')
print("cond(YBase):{},".format(la.cond(self.model.YBase)), end=' ')
if not self.opt['useAPriori']:
tauDiff = self.model.tauMeasured - self.tauEstimated
else:
tauDiff = self.tauEstimated
pham_percent = sla.norm(tauDiff) * 100 / sla.norm(self.model.tauMeasured)
error_increase_pham = pham_percent_start - pham_percent
print("error delta {}".format(error_increase_pham))
# while loop condition moved to here
# TODO: consider to only stop when under ratio and
# if error is to large at that point, advise to get more/better data
if ratio < 30:
break
if use_error_criterion and error_increase_pham > 3.5:
break
if has_run_once and self.opt['showEssentialSteps']:
# put some values into global variable for output
self.baseNonEssentialIdx = not_essential_idx
self.baseEssentialIdx = [x for x in range(0, self.model.num_base_params) if x not in not_essential_idx]
self.num_essential_params = len(self.baseEssentialIdx)
self.xBase_essential = np.zeros_like(xBase_orig)
# take current xBase with reduced parameters as essentials to display
self.xBase_essential[self.baseEssentialIdx] = self.model.xBase
self.p_sigma_x = p_sigma_x
old_showStd = self.opt['showStandardParams']
old_showBase = self.opt['showBaseParams']
self.opt['showStandardParams'] = 0
self.opt['showBaseParams'] = 1
oc = OutputConsole(self)
oc.render(self)
self.opt['showStandardParams'] = old_showStd
self.opt['showBaseParams'] = old_showBase
print(base_idx, np.argmax(p_sigma_x))
print(self.baseNonEssentialIdx)
input("Press return...")
else:
has_run_once = 1
# cancel the parameter with largest deviation
param_idx = cast(int, np.argmax(p_sigma_x))
# get its index among the base params (otherwise it doesnt take deletion into account)
param_base_idx = base_idx[param_idx]
if param_base_idx not in not_essential_idx:
not_essential_idx.append(param_base_idx)
self.prev_xBase = self.model.xBase.copy()
self.model.xBase = np.delete(self.model.xBase, param_idx, 0)
base_idx = np.delete(base_idx, param_idx, 0)
self.model.YBase = np.delete(self.model.YBase, param_idx, 1)
# re-estimate parameters with reduced regressor
self.identifyBaseParameters()
b_c += 1
not_essential_idx.pop()
print("essential rel stddevs: {}".format(prev_p_sigma_x))
self.p_sigma_x = prev_p_sigma_x
# get indices of the essential base params
self.baseNonEssentialIdx = not_essential_idx
self.baseEssentialIdx = [x for x in range(0, self.model.num_base_params) if x not in not_essential_idx]
self.num_essential_params = len(self.baseEssentialIdx)
# leave previous base params and regressor unchanged
self.xBase_essential = np.zeros_like(xBase_orig)
self.xBase_essential[self.baseEssentialIdx] = self.prev_xBase
self.model.YBase = YBase_orig
self.model.xBase = xBase_orig
print("Got {} essential parameters".format(self.num_essential_params))
if self.opt['showTiming']:
print("Getting base essential parameters took %.03f sec." % t.interval)
def findStdFromBaseEssParameters(self):
""" Find essential standard parameters from previously determined base essential parameters. """
# get the choice of indices into the std params of the independent columns.
# Of those, only select the std parameters that are essential
self.stdEssentialIdx = self.model.independent_cols[self.baseEssentialIdx]
# intuitively, also the dependent columns should be essential as the linear combination
# is used to identify and calc the error
useCADWeighting = 0 # usually produces exact same result, but might be good for some tests
if self.opt['useDependents']:
# also get the ones that are linearly dependent on them -> base params
dependents = [] # type: List[int]
#to_delete = []
for i in range(0, self.model.base_deps.shape[0]):
if i in self.baseEssentialIdx:
for s in self.model.base_deps[i].free_symbols:
idx = self.model.param_syms.index(s)
if idx not in dependents:
dependents.append(idx)
#print self.stdEssentialIdx
#print len(dependents)
print(dependents)
self.stdEssentialIdx = np.concatenate((self.stdEssentialIdx, dependents))
#np.delete(self.stdEssentialIdx, to_delete, 0)
# remove mass params if present
#if self.opt['dontIdentifyMasses']:
# ps = list(range(0, self.model.num_identified_params, 10))
# self.stdEssentialIdx = np.fromiter((x for x in self.stdEssentialIdx if x not in ps), int)
self.stdNonEssentialIdx = [x for x in range(0, self.model.num_identified_params) if x not in self.stdEssentialIdx]
# get \hat{x_e}, set zeros for non-essential params
if self.opt['useDependents'] or useCADWeighting:
# we don't really know what the weights are if we have more std essential than base
# essentials, so use CAD/previous params for weighting
self.xStdEssential = self.model.xStdModel.copy()
# set essential but zero cad values to small values that are in possible range of those parameters
# so something can be estimated
#self.xStdEssential[np.where(self.xStdEssential == 0)[0]] = .1
idx = 0
for p in self.xStdEssential:
if p == 0:
v = 0.1
p_start = idx // 10 * 10
if idx % 10 in [1,2,3]: # com value
v = cast(float, np.mean(self.model.xStdModel[p_start + 1:p_start + 4]) * 0.1)
elif idx % 10 in [4,5,6,7,8,9]: # inertia value
inertia_range = np.array([4,5,6,7,8,9])+p_start
v = cast(float, np.mean(self.model.xStdModel[np.where(self.model.xStdModel[inertia_range] != 0)[0]+p_start+4]) * 0.1)
if v == 0:
v = 0.1
self.xStdEssential[idx] = v
#print idx, idx % 10, v
idx += 1
if idx > self.model.num_model_params:
break
# cancel non-essential std params so they are not identified
self.xStdEssential[self.stdNonEssentialIdx] = 0
else:
# weighting using base essential params (like in Gautier, 2013)
self.xStdEssential = np.zeros_like(self.model.xStdModel)
#if self.opt['useAPriori']:
# self.xStdEssential[self.stdEssentialIdx] = self.xBase_essential[self.baseEssentialIdx] \
# + self.xBaseModel[self.baseEssentialIdx]
#else:
self.xStdEssential[self.stdEssentialIdx] = self.xBase_essential[self.baseEssentialIdx]
def identifyBaseParameters(self, YBase=None, tau=None, id_only=False):
# type: (np._ArrayLike, np._ArrayLike, bool) -> None
"""use previously computed regressors and identify base parameter vector using ordinary or
weighted least squares."""
if YBase is None:
YBase = self.model.YBase
if tau is None:
tau = self.model.tau
if self.opt['useBasisProjection']:
self.model.xBaseModel = self.model.xStdModel.dot(self.model.B)
else:
self.model.xBaseModel = self.model.K.dot(self.model.xStdModel[self.model.identified_params])
if self.urdf_file_real:
if self.opt['useBasisProjection']:
self.xBaseReal = np.dot(self.model.Binv, self.xStdReal[self.model.identified_params])
else:
self.xBaseReal = self.model.K.dot(self.xStdReal[self.model.identified_params])
# note: using pinv is only ok if low condition number, otherwise numerical issues can happen
# should always try to avoid inversion of ill-conditioned matrices if possible
# invert equation to get parameter vector from measurements and model + system state values
self.model.YBaseInv = la.pinv(YBase)
# identify using numpy least squares method (should be numerically more stable)
self.model.xBase = la.lstsq(YBase, tau)[0]
if self.opt['addContacts']:
self.model.xBase -= self.model.YBaseInv.dot(self.model.contactForcesSum)
"""
# using pseudoinverse
self.model.xBase = self.model.YBaseInv.dot(tau.T) - self.model.YBaseInv.dot(self.model.contactForcesSum)
# damped least squares
from scipy.sparse.linalg import lsqr
self.model.xBase = lsqr(YBase, tau, damp=10)[0] - self.model.YBaseInv.dot(self.model.contactForcesSum)
"""
# stop here if called recursively
if id_only:
return
if self.opt['showBaseParams'] or self.opt['verbose'] or self.opt['useRegressorRegularization']:
# get estimation once with previous ordinary LS solution parameters
self.estimateRegressorTorques('base', print_stats=True)
if 'selectingBlocks' not in self.opt or not self.opt['selectingBlocks']:
self.p_sigma_x = self.getStdDevForParams()
if self.opt['useWLS']:
"""
additionally do weighted least squares IDIM-WLS, cf. Zak, 1994, Gautier, 1997 and Khalil, 2007.
adds weighting with relative standard dev of estimation error on OLS base regressor and params.
(includes reducing effect of different units of parameters)
"""
# get estimation once with previous ordinary LS solution parameters
self.estimateRegressorTorques('base')
self.p_sigma_x = self.getStdDevForParams()
if self.opt['floatingBase']: fb = 6
else: fb = 0
r = self.data.num_used_samples*(self.model.num_dofs+fb)
'''
if self.opt['useAPriori']:
tauDiff = self.model.tauMeasured - self.tauEstimated
else:
tauDiff = self.tauEstimated
# get standard deviation of measurement and modeling error \sigma_{rho}^2
# for each joint subsystem (rho is assumed zero mean independent noise)
self.sigma_rho = np.square(sla.norm(tauDiff)) / (r-self.model.num_base_params)
'''
# repeat stddev values for each measurement block (n_joints * num_samples)
# along the diagonal of G
# G = np.diag(np.repeat(1/self.sigma_rho, self.num_used_samples))
#G = scipy.sparse.spdiags(np.tile(1/self.sigma_rho, self.num_used_samples), 0,
# self.num_dofs*self.num_used_samples, self.num_dofs*self.num_used_samples)
#G = scipy.sparse.spdiags(np.repeat(1/np.sqrt(self.sigma_rho), self.data.num_used_samples), 0, r, r)
G = scipy.sparse.spdiags(np.repeat(np.array([1/self.p_sigma_x]), self.data.num_used_samples), 0, r, r)
# weigh Y and tau with deviations
self.model.YBase = G.dot(self.model.YBase)
if self.opt['useAPriori']:
#if identifying parameter error, weigh full tau
self.model.tau = G.dot(self.model.torques_stack) - G.dot(self.model.torquesAP_stack)
else:
self.model.tau = G.dot(self.model.tau)
if self.opt['verbose']:
print("Condition number of WLS YBase: {}".format(la.cond(self.model.YBase)))
# get identified values using weighted matrices without weighing them again
self.identifyBaseParameters(self.model.YBase, tau, id_only=True)
def identifyStandardParametersDirect(self):
"""Identify standard parameters directly with non-singular standard regressor."""
with helpers.Timer() as t:
U, s, VH = la.svd(self.model.YStd, full_matrices=False)
nb = self.model.num_base_params
# get non-singular std regressor
V_1 = VH.T[:, 0:nb]
U_1 = U[:, 0:nb]
s_1 = np.diag(s[0:nb])
s_1_inv = la.inv(s_1)
W_st_pinv = V_1.dot(s_1_inv).dot(U_1.T)
W_st = la.pinv(W_st_pinv)
self.YStd_nonsing = W_st
#TODO: add contact forces
x_est = W_st_pinv.dot(self.model.tau)
if self.opt['useAPriori']:
self.model.xStd = self.model.xStdModel + x_est
else:
self.model.xStd = x_est
"""
st = self.model.num_identified_params
# non-singular YStd, called W_st in Gautier, 2013
self.YStdHat = self.YStd - U[:, nb:st].dot(np.diag(s[nb:st])).dot(V[:,nb:st].T)
self.YStdHatInv = la.pinv(self.YStdHat)
x_tmp = np.dot(self.YStdHatInv, self.model.tau)
if self.opt['useAPriori']:
self.model.xStd = self.model.xStdModel + x_tmp
else:
self.model.xStd = x_tmp
"""
if self.opt['showTiming']:
print("Identifying std parameters directly took %.03f sec." % t.interval)
def identifyStandardEssentialParameters(self):
"""Identify standard essential parameters directly with non-singular standard regressor."""
with helpers.Timer() as t:
# weighting with previously determined essential params
# calculates V_1e, U_1e etc. (Gautier, 2013)
Yst_e = self.model.YStd.dot(np.diag(self.xStdEssential)) # = W_st^e
Ue, se, VHe = sla.svd(Yst_e, full_matrices=False)
ne = self.num_essential_params # nr. of essential params among base params
V_1e = VHe.T[:, 0:ne]
U_1e = Ue[:, 0:ne]
s_1e_inv = sla.inv(np.diag(se[0:ne]))
W_st_e_pinv = np.diag(self.xStdEssential).dot(V_1e.dot(s_1e_inv).dot(U_1e.T))
#W_st_e = la.pinv(W_st_e_pinv)
#TODO: add contact forces
x_tmp = W_st_e_pinv.dot(self.model.tau)
if self.opt['useAPriori']:
self.model.xStd = self.model.xStdModel + x_tmp
else:
self.model.xStd = x_tmp
if self.opt['showTiming']:
print("Identifying %s std essential parameters took %.03f sec." % (len(self.stdEssentialIdx), t.interval))
def estimateParameters(self):
'''identify parameters using data and regressor (method depends on chosen options)'''
if not self.data.num_used_samples > self.model.num_identified_params*2 \
and 'selectingBlocks' in self.opt and not self.opt['selectingBlocks']:
print(Fore.RED+"not enough samples for identification!"+Fore.RESET)
if self.opt['startOffset'] > 0:
print("(startOffset is at {})".format(self.opt['startOffset']))
sys.exit(1)
if self.opt['verbose']:
print("computing standard regressor matrix for data samples")
self.model.computeRegressors(self.data)
if self.opt['verbose']:
print("estimating parameters using regressor")
if self.opt['useEssentialParams']:
self.identifyBaseParameters()
self.findBaseEssentialParameters()
if self.opt['useAPriori']:
self.getBaseParamsFromParamError()
self.findStdFromBaseEssParameters()
self.identifyStandardEssentialParameters()
else:
#need to identify OLS base params in any case
self.identifyBaseParameters()
if self.opt['constrainToConsistent']:
if self.opt['useAPriori']:
self.getBaseParamsFromParamError()
if self.opt['identifyClosestToCAD']:
# first estimate feasible base params, then find corresponding feasible std
# params while minimizing distance to CAD
self.sdp.initSDP_LMIs(self)
self.sdp.identifyFeasibleStandardParameters(self)
# get feasible base solution by projection
if self.opt['useBasisProjection']:
self.model.xBase = self.model.Binv.dot(self.model.xStd)
else:
self.model.xBase = self.model.K.dot(self.model.xStd)
print("Trying to find equal solution closer to a priori values")
if self.opt['constrainUsingNL']:
self.nlopt.identifyFeasibleStdFromFeasibleBase(self.model.xBase)
else:
self.sdp.findFeasibleStdFromFeasibleBase(self, self.model.xBase)
else:
self.sdp.initSDP_LMIs(self)
# directly estimate constrained std params, distance to CAD not minimized
if self.opt['estimateWith'] == 'std_direct':
#self.identifyStandardParametersDirect() #get std nonsingular regressor
self.sdp.identifyFeasibleStandardParametersDirect(self) #use with sdp
else:
if self.opt['constrainUsingNL']:
self.model.xStd = self.model.xStdModel.copy()
self.nlopt.identifyFeasibleStandardParameters()
else:
self.sdp.identifyFeasibleStandardParameters(self)
#self.sdp.identifyFeasibleBaseParameters(self)
#self.model.xStd = self.model.xBase.dot(self.model.K)
if self.opt['useBasisProjection']:
self.model.xBase = self.model.Binv.dot(self.model.xStd)
else:
self.model.xBase = self.model.K.dot(self.model.xStd)
# get OLS standard parameters (with a priori), then correct to feasible
#self.findStdFromBaseParameters()
#if self.opt['useAPriori']:
# self.getBaseParamsFromParamError()
# correct std solution to feasible if necessary (e.g. infeasible solution from
# unsuccessful optimization run)
"""
if not self.paramHelpers.isPhysicalConsistent(self.model.xStd) and not self.opt['constrainUsingNL']:
#get full LMIs again
self.opt['deleteFixedBase'] = 0
self.sdp.initSDP_LMIs(self, remove_nonid=False)
print("Correcting solution to feasible std (non-optimal)")
self.model.xStd = self.sdp.findFeasibleStdFromStd(self, self.model.xStd)
"""
else:
#identify with OLS only
#get standard params from estimated base param error
if self.opt['estimateWith'] == 'std_direct':
self.identifyStandardParametersDirect()
else:
self.findStdFromBaseParameters()
#only then go back to absolute base params
if self.opt['useAPriori']:
self.getBaseParamsFromParamError()
def plot(self, text=None):
# type: (str) -> None
"""Create state and torque plots."""
if self.opt['verbose']:
print('plotting')
rel_time = self.model.T-self.model.T[0]
if self.validation_file:
rel_vtime = self.Tv-self.Tv[0]
if self.opt['floatingBase']:
fb = 6
else:
fb = 0
if not self.opt['plotBaseDynamics'] or not self.opt['floatingBase']:
# get only data for joints (skipping base data if present)
tauMeasured = self.model.tauMeasured[:, fb:]
tauEstimated = self.tauEstimated[:, fb:]
tauAPriori = self.tauAPriori[:, fb:]
if self.validation_file:
tauEstimatedValidation = self.tauEstimatedValidation[:, fb:]
tauMeasuredValidation = self.tauMeasuredValidation[:, fb:]
torque_labels = self.model.jointNames
else:
# get all data for floating base
tauMeasured = self.model.tauMeasured
tauEstimated = self.tauEstimated
tauAPriori = self.tauAPriori
if self.validation_file:
tauEstimatedValidation = self.tauEstimatedValidation
tauMeasuredValidation = self.tauMeasuredValidation
torque_labels = self.model.baseNames + self.model.jointNames
if self.opt['plotPerJoint']:
datasets = []
# plot base dynamics
if self.opt['floatingBase']:
if self.opt['plotBaseDynamics']:
for i in range(6):
datasets.append({
'unified_scaling': False,
#'y_label': '$F {{ {} }}$ (Nm)'.format(i),
'y_label': 'Force (N)',
'labels': ['Measured', 'Identified'], 'contains_base': False,
'dataset': [{
'data': [np.vstack((tauMeasured[:,i], tauEstimated[:,i])).T],
'time': rel_time, 'title': torque_labels[i]}
]}
)
# add plots for each joint
for i in range(fb, self.model.num_dofs):
datasets.append({
'unified_scaling': False,
#'y_label': '$\\tau_{{ {} }}$ (Nm)'.format(i+1),
'y_label': 'Torque (Nm)',
'labels': ['Measured', 'Identified'], 'contains_base': False,
'dataset': [{
'data': [np.vstack((tauMeasured[:,i], tauEstimated[:,i])).T],
'time': rel_time, 'title': torque_labels[i]}
]}
)
if self.opt['plotPrioriTorques']:
#plot a priori torques
apriori = tauAPriori[:,i]
datasets[-1]['dataset'][0]['data'][0] = np.vstack((datasets[-1]['dataset'][0]['data'][0].T, apriori)).T
datasets[-1]['labels'].append('CAD')
if self.opt['plotErrors']:
#plot joint torque errors
e = tauMeasured[:,i] - tauEstimated[:,i]
datasets[-1]['dataset'][0]['data'][0] = np.vstack((datasets[-1]['dataset'][0]['data'][0].T, e)).T
datasets[-1]['labels'].append('Error M/E')
# positions per joint
for i in range(self.model.num_dofs):
datasets.append(
{'unified_scaling': False, 'y_label': 'rad', 'labels': ['Position'], 'dataset':
[{'data': [self.data.samples['positions'][0:self.model.sample_end:self.opt['skipSamples']+1, i],
#self.data.samples['target_positions'][0:self.model.sample_end:self.opt['skipSamples']+1, i]
],
'time': rel_time, 'title': self.model.jointNames[i]},
]
}
)
# vel and acc combined
datasets.append(
{'unified_scaling': False, 'y_label': 'rad/s (/s2)', 'labels': self.model.jointNames, 'dataset':
[{'data': [self.data.samples['velocities'][0:self.model.sample_end:self.opt['skipSamples']+1]],
'time': rel_time, 'title': 'Velocities'},
{'data': [self.data.samples['accelerations'][0:self.model.sample_end:self.opt['skipSamples']+1]],
'time': rel_time, 'title': 'Accelerations'},
]
}
)
else: #don't plot per joint
datasets = [
{'unified_scaling': True, 'y_label': 'Torque (Nm)', 'labels': torque_labels,
'contains_base': self.opt['floatingBase'] and self.opt['plotBaseDynamics'],
'dataset':
[{'data': [tauMeasured], 'time': rel_time, 'title': 'Measured Torques'},
{'data': [tauEstimated], 'time': rel_time, 'title': 'Estimation with identified Params'},
{'data': [tauAPriori], 'time': rel_time, 'title': 'Estimation with A priori Params'},
]
},
{'unified_scaling': True, 'y_label': 'Torque (Nm)', 'labels': torque_labels,
'contains_base': self.opt['floatingBase'] and self.opt['plotBaseDynamics'],
'dataset':
[{'data': [tauMeasured-tauEstimated], 'time': rel_time, 'title': 'Identified Estimation Error'},
{'data': [tauMeasured-tauAPriori], 'time': rel_time, 'title': 'A priori Estimation Error'},
]
},
{'unified_scaling': False, 'y_label': 'rad (/s, /s2)', 'labels': self.model.jointNames, 'dataset':
[{'data': [self.data.samples['positions'][0:self.model.sample_end:self.opt['skipSamples']+1]],
'time': rel_time, 'title': 'Positions'},
{'data': [self.data.samples['velocities'][0:self.model.sample_end:self.opt['skipSamples']+1]],
'time': rel_time, 'title': 'Velocities'},
{'data': [self.data.samples['accelerations'][0:self.model.sample_end:self.opt['skipSamples']+1]],
'time': rel_time, 'title': 'Accelerations'},
]
}
]
if 'positions_raw' in self.data.samples:
datasets[2]['dataset'][0]['data'].append(self.data.samples['positions_raw'][0:self.model.sample_end:self.opt['skipSamples']+1])
if 'velocities_raw' in self.data.samples:
datasets[2]['dataset'][1]['data'].append(self.data.samples['velocities_raw'][0:self.model.sample_end:self.opt['skipSamples']+1])
if self.validation_file:
datasets.append(
{'unified_scaling': True, 'y_label': 'Torque (Nm)', 'labels': torque_labels,
'contains_base': self.opt['floatingBase'] and self.opt['plotBaseDynamics'],
'dataset':
[#{'data': [self.tauMeasuredValidation],
# 'time': rel_vtime, 'title': 'Measured Validation'},
{'data': [tauEstimatedValidation],
'time': rel_vtime, 'title': 'Estimated Validation'},
{'data': [tauEstimatedValidation - tauMeasuredValidation],
'time': rel_vtime, 'title': 'Validation Error'}
]
}
)
if self.opt['outputModule'] == 'matplotlib':
from identification.output import OutputMatplotlib
output = OutputMatplotlib(datasets, text=text)
output.render(self)
else:
print('No known output module given. Not creating plots!')
def printMemUsage(self):
import humanize
total = 0
print("Memory usage:")
for v in self.__dict__:
if type(self.__dict__[v]).__module__ == np.__name__:
size = self.__dict__[v].nbytes
total += size
print("{}: {} ".format(v, (humanize.naturalsize(size, binary=True))), end=' ')
#TODO: extend for builtins
print("- total: {}".format(humanize.naturalsize(total, binary=True)))
def main():
import argparse
parser = argparse.ArgumentParser(description='Load measurements and URDF model to get inertial parameters.')
parser.add_argument('--config', required=True, type=str, help="use options from given config file")
parser.add_argument('-m', '--model', required=True, type=str, help='the file to load the robot model from')
parser.add_argument('--model_real', required=False, type=str, help='the file to load the model params for\
comparison from')
parser.add_argument('-o', '--model_output', '--output', required=False, type=str, help='the file to save the identified params to')