-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
250 lines (206 loc) · 9.63 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import numpy as np
import os
import cv2
import json
import torch
import pandas as pd
from tqdm.auto import tqdm as tq
from sklearn.model_selection import train_test_split
import torch.nn as nn
import segmentation_models_pytorch as smp
from torch.utils.data import DataLoader
from data.data_loader import CloudDataset
from utils.utils import get_preprocessing, mask2rle, post_process, resize_it, dice, get_prec_rec_f1
#MODEL_NAME = "Unet-ResNet50-BCEDice-20E"
#MODEL_NAME = "Unet-EfficientB1-BCEDice-20E"
#MODEL_NAME = "FPN-ResNet50-BCEDice-20E"
MODEL_NAME = "DeepLabV3Plus-ResNet50-BCEDice-20E"
DATA_PATH = "./dataset"
LOAD_PARAMS = False
def read_class_params(model_name):
with open(f"./logs/{model_name}/class_params-final.json") as f:
raw_data = json.load(f)
data = {int(key):tuple(map(float, raw_data[key].strip()[1:-1].split(','))) for key in raw_data}
return data
def find_best_threshold_params(model, preprocessing_fn):
train = pd.read_csv(f"{DATA_PATH}/train.csv")
train['label'] = train['Image_Label'].apply(lambda x: x.split('_')[1])
train['im_id'] = train['Image_Label'].apply(lambda x: x.split('_')[0])
id_mask_count = train.loc[train['EncodedPixels'].isnull() == False, 'Image_Label'].apply(lambda x: x.split('_')[0]).value_counts().\
reset_index().rename(columns={'index': 'img_id', 'Image_Label': 'count'})
id_mask_count = id_mask_count.sort_values('img_id')
_, valid_ids = train_test_split(id_mask_count['img_id'].values, random_state=42, stratify=id_mask_count['count'], test_size=0.1)
valid_dataset = CloudDataset(df=train, path=DATA_PATH, datatype='valid', img_ids=valid_ids,
preprocessing=get_preprocessing(preprocessing_fn))
valid_loader = DataLoader(valid_dataset, batch_size=16, shuffle=False, num_workers=0)
valid_masks = []
count = 0
tr = min(len(valid_ids)*4, 2000)
probabilities = np.zeros((tr, 350, 525), dtype = np.float32)
for data, target in tq(valid_loader):
if torch.cuda.is_available():
data = data.cuda()
target = target.cpu().detach().numpy()
outpu = model(data).cpu().detach().numpy()
for p in range(data.shape[0]):
output, mask = outpu[p], target[p]
for m in mask:
valid_masks.append(resize_it(m))
for probability in output:
probabilities[count, :, :] = resize_it(probability)
count += 1
if count >= tr - 1:
break
if count >= tr - 1:
break
sigmoid = lambda x: 1 / (1 + np.exp(-x))
class_params = {}
for class_id in range(4):
attempts = []
print(f"Searching for class {class_id}")
for t in range(0, 100, 5):
t /= 100
for ms in [0, 100, 1200, 5000, 10000, 30000]:
masks, d = [], []
for i in range(class_id, len(probabilities), 4):
probability = probabilities[i]
predict, num_predict = post_process(sigmoid(probability), t, ms)
masks.append(predict)
for i, j in zip(masks, valid_masks[class_id::4]):
if (i.sum() == 0) & (j.sum() == 0):
d.append(1)
else:
d.append(dice(i, j))
attempts.append((t, ms, np.mean(d)))
attempts_df = pd.DataFrame(attempts, columns=['threshold', 'size', 'dice'])
attempts_df = attempts_df.sort_values('dice', ascending=False)
best_threshold = attempts_df['threshold'].values[0]
best_size = attempts_df['size'].values[0]
class_params[class_id] = (best_threshold, best_size)
return class_params
def eval_validation(model, params, preprocessing_fn):
train = pd.read_csv(f"{DATA_PATH}/train.csv")
train['label'] = train['Image_Label'].apply(lambda x: x.split('_')[1])
train['im_id'] = train['Image_Label'].apply(lambda x: x.split('_')[0])
id_mask_count = train.loc[train['EncodedPixels'].isnull() == False, 'Image_Label'].apply(lambda x: x.split('_')[0]).value_counts().\
reset_index().rename(columns={'index': 'img_id', 'Image_Label': 'count'})
_, valid_ids = train_test_split(id_mask_count['img_id'].values, random_state=42, stratify=id_mask_count['count'], test_size=0.1)
valid_dataset = CloudDataset(df=train, path=DATA_PATH, datatype='valid', img_ids=valid_ids,
preprocessing=get_preprocessing(preprocessing_fn))
valid_loader = DataLoader(valid_dataset, batch_size=8, shuffle=False, num_workers=0)
precision = [0,0,0,0]
recall = [0,0,0,0]
f1 = [0,0,0,0]
image_id = 0
counter = 0
sigmoid = lambda x: 1 / (1 + np.exp(-x))
for data, target in tq(valid_loader):
if torch.cuda.is_available():
data = data.cuda()
output = model(data)
target = target.cpu().detach().numpy()
for i, batch in enumerate(output):
masks = target[i]
for j, probability in enumerate(batch):
probability = probability.cpu().detach().numpy()
ground_truth = cv2.resize(masks[j], dsize=(525, 350), interpolation=cv2.INTER_NEAREST)
if probability.shape != (350, 525):
probability = cv2.resize(probability, dsize=(525, 350), interpolation=cv2.INTER_LINEAR)
predict, num_predict = post_process(sigmoid(probability), params[image_id % 4][0], params[image_id % 4][1])
curr_prec, curr_rec, curr_f1 = get_prec_rec_f1(ground_truth=ground_truth, prediction=predict)
precision[image_id % 4] += curr_prec
recall[image_id % 4] += curr_rec
f1[image_id % 4] += curr_f1
counter += 1
image_id += 1
precision = [i/counter for i in precision]
recall = [i/counter for i in recall]
f1 = [i/counter for i in f1]
print("Precision", precision)
print("Recall", recall)
print("F1", f1)
if __name__ == "__main__":
train_on_gpu = torch.cuda.is_available()
print(f"Use GPU: {train_on_gpu}")
logs_path = os.path.join("./logs", MODEL_NAME)
ENCODER = 'resnet50'
#ENCODER = 'efficientnet-b1'
ENCODER_WEIGHTS = 'imagenet'
DEVICE = 'cuda'
ACTIVATION = None
#model = smp.Unet(
# encoder_name=ENCODER,
# encoder_weights=ENCODER_WEIGHTS,
# classes=4,
# activation=ACTIVATION,
#)
#model = smp.FPN(
# encoder_name=ENCODER,
# encoder_weights=ENCODER_WEIGHTS,
# classes=4,
# activation=ACTIVATION,
#)
model = smp.DeepLabV3Plus(
encoder_name=ENCODER,
encoder_weights=ENCODER_WEIGHTS,
classes=4,
activation=ACTIVATION,
)
preprocessing_fn = smp.encoders.get_preprocessing_fn(ENCODER, ENCODER_WEIGHTS)
if train_on_gpu:
model.cuda()
# load best model
model.load_state_dict(torch.load(os.path.join(logs_path, MODEL_NAME+"-final.pt")))
# model.load_state_dict(torch.load(os.path.join(logs_path, MODEL_NAME+"-checkpoint.pt")))
model.eval();
if LOAD_PARAMS:
class_params = read_class_params(MODEL_NAME)
else:
class_params = find_best_threshold_params(model, preprocessing_fn)
print("Class params", class_params)
save_params = {str(key):str(value) for key, value in class_params.items()}
with open(os.path.join(logs_path, "class_params-final.json"), "w+") as f:
json.dump(save_params, f)
# eval_validation(model, class_params, preprocessing_fn)
sub = pd.read_csv(f"{DATA_PATH}/sample_submission.csv")
sub["label"] = sub["Image_Label"].apply(lambda x: x.split("_")[1])
sub["im_id"] = sub["Image_Label"].apply(lambda x: x.split("_")[0])
test_ids = sub["Image_Label"].apply(lambda x: x.split("_")[0]).drop_duplicates().values
test_dataset = CloudDataset(df=sub,
datatype='test',
img_ids=test_ids,
preprocessing=get_preprocessing(preprocessing_fn))
test_loader = DataLoader(test_dataset, batch_size=4,
shuffle=False, num_workers=2)
subm = pd.read_csv(f"{DATA_PATH}/sample_submission.csv")
pathlist = [f"{DATA_PATH}/test_images/" + i.split("_")[0] for i in subm['Image_Label']]
encoded_pixels = []
image_id = 0
cou = 0
np_saved = 0
sigmoid = lambda x: 1 / (1 + np.exp(-x))
counter = 0
for data, target in tq(test_loader):
if train_on_gpu:
data = data.cuda()
output = model(data)
for i, batch in enumerate(output):
for probability in batch:
probability = probability.cpu().detach().numpy()
counter += 1
if probability.shape != (350, 525):
probability = cv2.resize(probability, dsize=(525, 350), interpolation=cv2.INTER_LINEAR)
predict, num_predict = post_process(sigmoid(probability), class_params[image_id % 4][0], class_params[image_id % 4][1])
# cv2.imwrite(f"temp/{counter}.png",predict*255)
if num_predict == 0:
encoded_pixels.append('')
else:
r = mask2rle(predict)
encoded_pixels.append(r)
np_saved += np.sum(predict > 0)
cou += 1
image_id += 1
print(f"number of pixel saved {np_saved}")
sub['EncodedPixels'] = encoded_pixels
sub.to_csv(os.path.join(logs_path, 'submission-final.csv'), columns=['Image_Label', 'EncodedPixels'], index=False)
# sub.to_csv(os.path.join(logs_path, 'submission-checkpoint.csv'), columns=['Image_Label', 'EncodedPixels'], index=False)