-
Notifications
You must be signed in to change notification settings - Fork 131
/
Copy pathconfig.py
97 lines (89 loc) · 4.38 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from database.entities.leagues import *
from models import estimators
# Database Config
leagues_directory = 'database/storage/leagues'
leagues_index_filepath = 'database/storage/leagues/index.pkl'
models_directory = 'database/storage/models'
models_index_filepath = 'database/storage/models/index.pkl'
all_leagues_dict = {
'Argentina': [PrimeraDivision()],
'Belgium': [JupilerLeague()],
'Brazil': [BrazilSerieA()],
'China': [ChinaSuperLeague()],
'Denmark': [SuperLiga()],
'England': [PremierLeague(), Championship(), League1(), League2()],
'Finland': [VeikkausLiiga()],
'France': [Ligue1(), Ligue2()],
'Germany': [Bundesliga1(), Bundesliga2()],
'Greece': [SuperLeague()],
'Ireland': [IrelandPremierDivision()],
'Italy': [SerieA(), SerieB()],
'Japan': [J1()],
'Mexico': [LigaMX()],
'Netherlands': [Eredivisie()],
'Norgway': [Eliteserien()],
'Poland': [Ekstraklasa()],
'Portugal': [Liga1()],
'Romania': [RomaniaLiga1()],
'Russia': [RussiaPremierLeague()],
'Scotland': [Premiership()],
'Spain': [LaLiga(), SegundaDivision()],
'Sweden': [Allsvenskan()],
'Switzerland': [SwitzerlandSuperLeague()],
'USA': [MLS()],
'Turkey': [SuperLig()]
}
# Models config
normalizers = ['None', 'Min-Max', 'Max-Abs', 'Standard', 'Robust']
samplers = ['None', 'Random-UnderSampling', 'Near-Miss', 'Random-OverSampling', 'SVM-SMOTE', 'SMOTE-NN']
fit_test_size = 100
# App Config
app_title = 'Prophit-Bet (v2)'
themes_dict = {
'Default': 'winnative',
'forest-light': 'database/storage/themes/forest/forest-light.tcl',
'forest-dark': 'database/storage/themes/forest/forest-dark.tcl',
'breeze': 'database/storage/themes/breeze/breeze/breeze.tcl',
'breeze-dark': 'database/storage/themes/breeze/breeze-dark/breeze-dark.tcl'
}
help_url_links = {
'About': {
'About Me': 'https://kochlisgit.github.io/aboutme/',
'More Applications': 'https://github.com/kochlisGit?tab=repositories'
},
'Machine Learning': {
'ML vs SM': 'https://www.turintech.ai/machine-learning-vs-statistical-modelling-which-one-is-right-for-your-business-problem/',
'Decision Tree': 'https://www.ibm.com/topics/decision-trees',
'KNN': 'https://www.ibm.com/topics/knn',
'Logistic Regression': 'https://www.datacamp.com/tutorial/understanding-logistic-regression-python',
'Naive Bayes': 'https://www.ibm.com/topics/naive-bayes',
'Neural Network': 'https://www.ibm.com/topics/neural-networks',
'XGBoost': 'https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-HowItWorks.html',
'Random Forest': 'https://builtin.com/data-science/random-forest-algorithm',
'SVM': 'https://www.linkedin.com/pulse/support-vector-machine-algorithm-svms-dishant-kharkar/'
},
'Evaluation Metrics': {
'Evaluation Metrics': 'https://www.kdnuggets.com/2020/04/performance-evaluation-metrics-classification.html',
'Model Evaluation': 'https://www.linkedin.com/pulse/train-test-validation-three-pillars-accurate-machine-jagarlapoodi/',
'Cross Validation': 'https://www.linkedin.com/pulse/cross-validation-machine-learning-ishan-shah/',
'Percentiles': 'https://www.w3schools.com/datascience/ds_stat_percentiles.asp'
},
'Feature Preprocessing': {
'Imbalanced Classes': 'https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data',
'Sampling Methods': 'https://www.turintech.ai/what-is-imbalanced-data-and-how-to-handle-it/',
'Correlation Analysis': 'https://www.questionpro.com/features/correlation-analysis.html',
'Variance': 'https://stats.stackexchange.com/questions/488989/in-feature-selection-what-is-the-reason-for-considering-removing-low-variance-f',
'Normalization': 'https://www.kdnuggets.com/2020/04/data-transformation-standardization-normalization.html'
}
}
# Fixtures
browsers = ['chrome', 'firefox', 'edge']
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
days = [f'{i}' for i in range(1, 32)]
fixtures_class = 'full-matches-table mt1e '
fixture_date_class = 'fs11e lh14e'
team_name_class = 'hover-modal-parent hover-modal-ajax-team'
odd_row_class = 'stat odds dark-gray bbox'
odd_values_class = 'col-lg-4 col-sm-4 ac '
# Training Config
random_seed = 0