-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathkalman_test.go
182 lines (160 loc) · 3.77 KB
/
kalman_test.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
package kalman
import (
"fmt"
"testing"
"github.com/konimarti/lti"
"gonum.org/v1/gonum/mat"
)
// Testing based on example on page 145 in book "Kalman Filter" by R. Marchthaler, 2017
//newContext
func newContext() *Context {
// define current context
ctx := Context{
X: mat.NewVecDense(4, []float64{976.32452, 0, 0.092222, 0}),
P: mat.NewDense(4, 4, []float64{
3, 0, 0, 0,
0, 3, 0, 0,
0, 0, 3, 0,
0, 0, 0, 0.03,
}),
}
return &ctx
}
//newSetup is a helper functions for tests
func newSetup() (lti.Discrete, Noise) {
// define LTI system
dt := 0.1
lti := lti.Discrete{
Ad: mat.NewDense(4, 4, []float64{
1, dt, 0.5 * dt * dt, 0,
0, 1, dt, 0,
0, 0, 1, 0,
0, 0, 0, 1,
}),
Bd: mat.NewDense(4, 1, nil),
C: mat.NewDense(2, 4, []float64{
1, 0, 0, 0,
0, 0, 1, -1,
}),
D: mat.NewDense(2, 1, nil),
}
// define system and measurement noise
q1 := 100.0 / 9.0
q2 := 0.04 / 1000.0
nse := Noise{
Q: mat.NewDense(4, 4, []float64{
0.25 * q1 * dt * dt * dt * dt, 0.5 * q1 * dt * dt * dt, 0.5 * q1 * dt * dt, 0,
0.5 * q1 * dt * dt * dt, q1 * dt * dt, q1 * dt, 0,
0.5 * q1 * dt * dt, q1 * dt, q1, 0,
0, 0, 0, q2,
}),
R: mat.NewDense(2, 2, []float64{20, 0, 0, 0.2}),
}
return lti, nse
}
//NewImplementedFilter returns the implementation of the Kalman filter for testing
func newImplementedFilter() *filterImpl {
lti, nse := newSetup()
return &filterImpl{lti, nse, nil}
}
func TestPredictionState(t *testing.T) {
ctx := newContext()
filter := newImplementedFilter()
// predict next state
ctrl := mat.NewVecDense(1, nil)
filter.NextState(ctx, ctrl)
expectedVec := mat.NewVecDense(4, []float64{
976.32498, 0.0092222, 0.092222, 0,
})
if !mat.EqualApprox(expectedVec, ctx.X, 1e-4) {
fmt.Println("actual:", ctx.X)
fmt.Println("expected:", expectedVec)
t.Error("PredictState")
}
}
func TestPredictionCovariance(t *testing.T) {
ctx := newContext()
filter := newImplementedFilter()
// predict next covariance
filter.NextCovariance(ctx)
// predict next covariance
expected := mat.NewDense(4, 4, []float64{
3.0304, 0.30706, 0.070556, 0,
0.30706, 3.1411, 1.4111, 0,
0.070556, 1.4111, 14.111, 0,
0, 0, 0, 0.03004,
})
if !mat.EqualApprox(expected, ctx.P, 1e-4) {
fmt.Println("actual:", ctx.P)
fmt.Println("expected:", expected)
t.Error("PredictCovariance")
}
}
func TestUpdate(t *testing.T) {
ctx := newContext()
filter := newImplementedFilter()
ctrl := mat.NewVecDense(1, nil)
z := mat.NewVecDense(2, []float64{
976.32452, 0.092222,
})
if err := filter.Update(ctx, z, ctrl); err != nil {
t.Error(err)
}
expectedX := mat.NewVecDense(4, []float64{
976.32452, 0, 0.092222, 0,
})
if !mat.EqualApprox(expectedX, ctx.X, 1e-4) {
fmt.Println("actual:", ctx.X)
fmt.Println("expected:", expectedX)
t.Error("UpdateState")
}
}
func TestFilter(t *testing.T) {
lti, nse := newSetup()
ctx := newContext()
filter := NewFilter(lti, nse)
ctrl := mat.NewVecDense(1, nil)
config := []struct {
Iter int
Input []float64
Expected []float64
}{
{
Iter: 1,
Input: []float64{
976.32, 0.092222,
},
Expected: []float64{
976.32452, 0.092222202,
},
},
{
Iter: 2,
Input: []float64{
979.37006, 0.52210785,
},
Expected: []float64{
976.6817722228133, 0.5147628306401388,
},
},
{
Iter: 3,
Input: []float64{
977.8754, 0.98211677,
},
Expected: []float64{
976.8229728968552, 0.9740485904798598,
},
},
}
for _, cfg := range config {
z := mat.NewVecDense(2, cfg.Input)
filteredResult := filter.Apply(ctx, z, ctrl)
expectedResult := mat.NewVecDense(2, cfg.Expected)
if !mat.EqualApprox(expectedResult, filteredResult, 1e-4) {
fmt.Println("actual:", filteredResult)
fmt.Println("expected:", expectedResult)
t.Error("ApplyFilter:", cfg.Iter)
}
}
}