-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscf_helper.cpp
379 lines (353 loc) · 13.9 KB
/
scf_helper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
//
// Created by Kshitij Surjuse on 9/20/22.
//
//Eigen
#include <Eigen/Cholesky>
#include <Eigen/Dense>
#include <Eigen/Eigenvalues>
#include <libint2.hpp>
#if !LIBINT2_CONSTEXPR_STATICS
# include <libint2/statics_definition.h>
#endif
using std::cout;
using std::string;
using std::endl;
using libint2::Shell;
using libint2::Atom;
using libint2::BasisSet;
using libint2::Engine;
using libint2::Operator;
using std::vector;
typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> Matrix;
typedef Eigen::DiagonalMatrix<double, Eigen::Dynamic, Eigen::Dynamic> DiagonalMatrix;
Matrix compute_1body_ints(const std::vector<libint2::Shell>&
shells,libint2::Operator obtype,const std::vector<Atom>& atoms);
Matrix make_fock(const std::vector<libint2::Shell>& shells,const Matrix& D);
Matrix make_fock_uhf(const std::vector<libint2::Shell>& shells,
const Matrix& Dt, const Matrix& Dspin);
Matrix make_fock_uhf_complex(const std::vector<libint2::Shell>& shells,const Matrix& Dt, const Matrix& Dspin);
Matrix make_density(Matrix C ,const int nocc){
auto nrows = C.rows();
auto ncols = C.cols();
Matrix Density = Eigen::MatrixXd::Zero(nrows,ncols);
for(size_t i =0;i<nrows;i++){
for(size_t j = 0; j< ncols; j++ ){
for(size_t m=0; m < nocc; m++){
Density(i,j) += C(i,m)*C(j,m);
}
}
}
return Density;
}
double scf_energy(Matrix D,Matrix H, Matrix F){
double energy = 0.0;
auto nrows = D.rows();
auto ncols = D.cols();
for( size_t i = 0; i<nrows ; i++){
for(size_t j=0; j < ncols; j++){
energy += D(j,i) * (H(i,j)+F(i,j));
}
}
return energy;
}
double uhf_energy(Matrix Dt, Matrix H , Matrix Dalpha,
Matrix Falpha, Matrix Dbeta, Matrix Fbeta){
double uhf_energy = 0.0;
auto nrows = Dt.rows();
auto ncols = Dt.cols();
for(auto i=0; i<nrows;i++){
for(auto j=0;j<ncols;j++){
uhf_energy += Dt(j,i)*H(i,j) + Dalpha(j,i)*Falpha(i,j) + Dbeta(j,i)*Fbeta(i,j);
}
}
return 0.5*uhf_energy;
}
Matrix dot_prod(Matrix A, Matrix B){
Matrix C = Eigen::MatrixXd::Zero(A.rows(),B.cols());
for (auto i=0; i < A.rows() ;i++){
for(auto j=0; j < B.cols() ; j++){
for(auto k=0; k< A.cols(); k++){
C(i,j) += A(i,k)*B(k,j);
}
}
}
return C;
}
struct inp_params{
string scf = "RHF";
string method = "HF";
string basis= "STO-3G";
double scf_convergence = 1e-10;
int do_diis = 1;
int singles = 1;
int spin_mult = 1;
int charge = 0;
string unit = "A";
};
Matrix make_X(Matrix S){
int n = S.rows();
Eigen::SelfAdjointEigenSolver<Matrix> S_diag(S);
auto eigenvec = S_diag.eigenvectors();
auto eigenvalues = S_diag.eigenvalues();
Matrix half_eigen = Matrix::Zero(n,n);
for(auto i=0;i<n;i++){
half_eigen(i,i) = pow(eigenvalues(i),-0.5);
}
Matrix temp = dot_prod(eigenvec, half_eigen);
Matrix X = dot_prod(temp,eigenvec.transpose());
return X;
}
struct scf_results{
bool is_rhf=1;
int nelec,nbasis,no,nv , nalpha,nbeta;
Matrix C,F,Calpha,Cbeta,Falpha,Fbeta;
double scf_energy;
};
Matrix guess_density(int no, int nbasis){
Matrix gD = Matrix::Zero(nbasis,nbasis);
for( auto i=0;i<no;i++){
gD(i,i) =1.0;
}
return gD;
}
scf_results RHF(BasisSet obs, vector<libint2::Atom> atoms,int Nbasis, int nelec, inp_params inpParams , double enuc){
scf_results results;
const auto nocc = nelec / 2;
results.nelec = nelec;
results.nbasis = Nbasis;
results.no = nelec;
results.nv = 2*Nbasis-nelec;
// 1 body intergrals
libint2::initialize();
auto S = compute_1body_ints(obs.shells(), Operator::overlap , atoms);
auto T = compute_1body_ints(obs.shells(), Operator::kinetic , atoms);
auto V = compute_1body_ints(obs.shells(), Operator::nuclear , atoms);
Matrix H = T+V;
// initial guess fock = S^1/2.T * H * S^1/2
auto S_inv = make_X(S);
Matrix init_guess_fock;
init_guess_fock = dot_prod(S_inv.transpose(), dot_prod(H,S_inv));
//Build Initial Guess Density
Eigen::SelfAdjointEigenSolver<Matrix> init_fock_diag(init_guess_fock);
Matrix C = dot_prod(S_inv,init_fock_diag.eigenvectors());
Matrix D = guess_density(nocc,Nbasis);
cout << std::setprecision(12)<< "Initial SCF energy: " << scf_energy(D,H,H)<< endl;
//SCF LOOP
double hf_energy = 0.0;
int set_lenght = 8;
vector<Matrix> error_set;
vector<Matrix> fock_set;
for (int i=0;i<100; i++){
Matrix Fock = H + make_fock(obs.shells(),D);
//DIIS
if(inpParams.do_diis==1){
int Nerr = error_set.size();
if(i>0){
Matrix error = dot_prod(Fock, dot_prod(D,S))
- dot_prod(S,dot_prod(D,Fock));
if(Nerr < set_lenght){
error_set.push_back(error);
fock_set.push_back(Fock);
}
else if(Nerr>=set_lenght){
error_set.erase(error_set.begin());
fock_set.erase(fock_set.begin());
error_set.push_back(error);
fock_set.push_back(Fock);
}
}
if(Nerr>=2){
Matrix Bmat = Eigen::MatrixXd::Zero(Nerr+1,Nerr+1);
Matrix zerovec = Eigen::MatrixXd::Zero(Nerr +1,1);
zerovec(Nerr,0)=-1.0;
for(auto a=0;a<Nerr;a++){
for(auto b=0;b<a+1;b++){
Matrix temp = dot_prod(error_set[a].transpose(),error_set[b]);
Bmat(a,b) = Bmat(b,a) = temp.trace();
Bmat(Nerr,a) = Bmat(a,Nerr) = -1.0;
}
}
if(Bmat.determinant() !=0.0){
Eigen::FullPivHouseholderQR<Matrix> solver(Bmat);
solver.setThreshold(1e-15);
Matrix coeff = solver.solve(zerovec);
Fock -=Fock;
for(int a=0;a<Nerr;a++){
Fock += coeff(a)*fock_set[a];
}
}
else if(Bmat.determinant()==0.0){
inpParams.do_diis = 0;
cout << "Bmat is singular" << endl;
}
}
}
Matrix diag = dot_prod(S_inv.transpose(), dot_prod(Fock,S_inv));
Eigen::SelfAdjointEigenSolver<Matrix> fock_diag(diag);
C = dot_prod(S_inv,fock_diag.eigenvectors());
D = make_density(C,nocc);
double new_energy = scf_energy(D,H,Fock);
double delta_e = abs(new_energy - hf_energy);
hf_energy = new_energy;
if(i==0){cout << "iter " << "Energy (a.u.)\t\t"<< "Delta_E :\t"<< endl;}
cout << std::setprecision(13)<< i+1 << "\t"
<< hf_energy + enuc << "\t\t" << delta_e << endl;
auto mo_energy = fock_diag.eigenvalues();
if (delta_e <=inpParams.scf_convergence){
cout << "Converged SCF energy :" << hf_energy +enuc<< " a.u." << endl;
cout << "Eigenvalues of Fock Matrix:"<< endl;
for(int a=0;a< Nbasis;a++){
cout << a+1 << "\t" << mo_energy(a)<< endl;
}
Matrix F = Matrix::Zero(Nbasis,Nbasis);
for(auto i=0;i<Nbasis;i++){
F(i,i) = mo_energy(i);
}
results.scf_energy = hf_energy+enuc;
results.F = F;
results.C = C;
break;
}
}
return results;
}
scf_results UHF(BasisSet obs, vector<libint2::Atom> atoms,int Nbasis, int nelec, inp_params inpParams , double enuc) {
scf_results results;
const auto nocc = nelec;
results.is_rhf = 0;
results.nelec = nelec;
results.nbasis = Nbasis;
results.no = nelec;
results.nv = 2*Nbasis-nelec;
// 1 body intergrals
libint2::initialize();
auto S = compute_1body_ints(obs.shells(), Operator::overlap, atoms);
auto T = compute_1body_ints(obs.shells(), Operator::kinetic, atoms);
auto V = compute_1body_ints(obs.shells(), Operator::nuclear, atoms);
Matrix H = T + V;
// initial guess fock = S^1/2.T * H * S^1/2
auto S_inv = make_X(S);
Matrix init_guess_fock;
init_guess_fock = dot_prod(S_inv.transpose(), dot_prod(H,S_inv));
//Build Initial Guess Density
Eigen::SelfAdjointEigenSolver<Matrix> init_fock_diag(init_guess_fock);
Matrix C = dot_prod(S_inv,init_fock_diag.eigenvectors());
int nbeta = (nelec - inpParams.spin_mult + 1) / 2;
int nalpha = nbeta + (inpParams.spin_mult - 1);
results.nalpha = nalpha;
results.nbeta = nbeta;
cout << "Number of alpha electrons: " << nalpha << endl;
cout << "Number of beta electrons: " << nbeta << endl;
Matrix Dalpha = guess_density(nalpha,Nbasis);
Matrix Dbeta = guess_density(nbeta,Nbasis);
Matrix Dt = Dalpha + Dbeta;
cout << std::setprecision(12) << "initial energy :" << uhf_energy(Dt,H,Dalpha,H,Dbeta,H) << endl;
double hf_energy = 0.0;
int set_lenght = 6;
vector<Matrix> era,erb,fsa,fsb;
for (int i = 0; i < 200; i++) {
Matrix Falpha = H + make_fock_uhf_complex(obs.shells(), Dt, Dalpha);
Matrix Fbeta = H + make_fock_uhf_complex(obs.shells(), Dt, Dbeta);
if(inpParams.do_diis==1){
int Nerr = era.size();
if(i>0){
Matrix aerr = dot_prod(Falpha, dot_prod(Dalpha,S))
- dot_prod(S,dot_prod(Dalpha,Falpha));
Matrix berr = dot_prod(Fbeta, dot_prod(Dbeta,S))
- dot_prod(S,dot_prod(Dbeta,Fbeta));
if(Nerr < set_lenght){
era.push_back(aerr);
erb.push_back(berr);
fsa.push_back(Falpha);
fsb.push_back(Fbeta);
}
else if(Nerr>=set_lenght){
era.erase(era.begin());
erb.erase(erb.begin());
fsa.erase(fsa.begin());
fsb.erase(fsb.begin());
era.push_back(aerr);
erb.push_back(berr);
fsa.push_back(Falpha);
fsb.push_back(Fbeta);
}
}
if(Nerr>=2){
Matrix Bmata = Matrix::Zero(Nerr+1,Nerr+1);
Matrix zeroveca = Matrix::Zero(Nerr +1,1);
Matrix Bmatb = Matrix::Zero(Nerr+1,Nerr+1);
Matrix zerovecb = Matrix::Zero(Nerr +1,1);
zeroveca(Nerr,0)=-1.0;
zerovecb(Nerr,0)=-1.0;
for(auto a=0;a<Nerr;a++){
for(auto b=0;b<a+1;b++){
Matrix tempa = dot_prod(era[a].transpose(),era[b]);
Matrix tempb = dot_prod(erb[a].transpose(),erb[b]);
Bmata(a,b) = Bmata(b,a) = tempa.trace();
Bmatb(a,b) = Bmatb(b,a) = tempb.trace();
Bmata(Nerr,a) = Bmata(a,Nerr) = -1.0;
Bmatb(Nerr,a) = Bmatb(a,Nerr) = -1.0;
}
}
if(Bmata.determinant() !=0.0 && Bmatb.determinant() !=0.0) {
Eigen::FullPivHouseholderQR<Matrix> solvera(Bmata);
Eigen::FullPivHouseholderQR<Matrix> solverb(Bmatb);
solvera.setThreshold(1e-15);
solverb.setThreshold(1e-15);
Matrix coeffa = solvera.solve(zeroveca);
Matrix coeffb = solverb.solve(zerovecb);
Falpha -=Falpha;
Fbeta -=Fbeta;
for(int a=0;a<Nerr;a++){
Falpha += coeffa(a)*fsa[a];
Fbeta += coeffb(a)*fsb[a];
}
}
else if(Bmata.determinant()==0.0){
inpParams.do_diis = 0;
cout << "Bmat is singular" << endl;
}
}
}
Matrix tempa = dot_prod(S_inv.transpose(), dot_prod(Falpha,S_inv));
Eigen::SelfAdjointEigenSolver<Matrix> falpha_diag(tempa);
Matrix Calpha = dot_prod(S_inv,falpha_diag.eigenvectors());
Dalpha = make_density(Calpha,nalpha);
Matrix tempb = dot_prod(S_inv.transpose(), dot_prod(Fbeta,S_inv));
Eigen::SelfAdjointEigenSolver<Matrix> fbeta_diag(tempb);
Matrix Cbeta = dot_prod(S_inv,fbeta_diag.eigenvectors());
Dbeta = make_density(Cbeta,nbeta);
Dt = Dbeta+ Dalpha;
double new_energy = uhf_energy(Dt,H,Dalpha,Falpha,Dbeta, Fbeta);
double delta_e = abs(new_energy - hf_energy);
hf_energy = new_energy;
if(i==0){cout << "iter " << "Energy (a.u.)\t\t"<< "Delta_E :\t"<< endl;}
cout << std::setprecision(13)<< i+1 << "\t"
<< hf_energy + enuc << "\t\t" << delta_e << endl;
auto MOEa = falpha_diag.eigenvalues();
auto MOEb = fbeta_diag.eigenvalues();
if (delta_e <=inpParams.scf_convergence){
cout << std::setprecision(15)<< "Converged SCF energy :" << hf_energy +enuc<< " a.u." << endl << endl;
Matrix Fa = Matrix::Zero(Nbasis,Nbasis);
Matrix Fb = Matrix::Zero(Nbasis,Nbasis);
Matrix Moe = Matrix::Zero(Nbasis*2,Nbasis*2);
cout << "index \t" << "Alpha eigvals\t" << "\t" << "Beta eigvals\t" << endl;
for(auto i=0;i<Nbasis;i++){
Fa(i,i) = MOEa(i);
Fb(i,i) = MOEb(i);
cout << i << "\t"<< MOEa(i) << "\t"<< MOEb(i)<< endl;
}
for(auto i=0;i<2*Nbasis;i++){
Moe(i,i)=(i%2==0)*MOEa(i/2) + (i%2==1)*MOEb(i/2);
}
results.F = Moe;
results.scf_energy = hf_energy+enuc;
results.Falpha = Fa;
results.Fbeta = Fb;
results.Calpha = Calpha;
results.Cbeta = Cbeta;
break;
}
}
return results;
}