-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest_conv.py
344 lines (305 loc) · 14.1 KB
/
test_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"""
Simple tensorflow example
Simple, end-to-end, LeNet-5-like convolutional MNIST model example.
With one 5 x 5 convolutional layer, and two multiple convolutional layers
; 5 x 5 and 3 x 3 convolutional, respectively.
Merge above two convolved output in dense shape and perform fully connected activation.
fc1 - fc2 - fc3(output layer).
Each fully connected layer has 512, 256, 10 neurons respectively.
For more informations about tensorflow, see https://www.tensorflow.org
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import time
from six.moves import xrange # pylint: disable=redefined-builtin
import numpy
import tensorflow as tf
from utils import (
maybe_download,
extract_data,
extract_labels)
import matplotlib.pyplot as plt
from PIL import Image
IMAGE_SIZE = 28 # Image size
NUM_CHANNELS = 1 # Number of image channel (e.g RGB or gray scale)
NUM_LABELS = 2 # The number of target labels
VALIDATION_SIZE = 5000 # Size of the validation set.
SEED = 66478 # Set to None for random seed.
BATCH_SIZE = 1000 # Size of each training batch
NUM_EPOCHS = 1 # The number of epochs to training
EVAL_BATCH_SIZE = 1000 # Size of evaluation batch size
EVAL_FREQUENCY = 10 # Number of steps between evaluations.
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_boolean ('train', True, 'If true execute model training routine,'
'otherwise execute filtered image extraction routine')
flags.DEFINE_string ('model', None, 'If trained data already exists, load it')
flags.DEFINE_string ('input', None, 'Source of image, if None use random images from MNIST dataset')
#TODO: Make conv image extraction flags.
def error_rate(predictions, labels):
"""Return the error rate based on dense predictions and 1-hot labels."""
return 100.0 - (
100.0 *
numpy.sum(numpy.argmax(predictions, 1) == numpy.argmax(labels, 1)) /
predictions.shape[0])
def main(argv=None): # pylint: disable=unused-argument
# Get the data.
train_data_filename = maybe_download('train-images-idx3-ubyte.gz')
train_labels_filename = maybe_download('train-labels-idx1-ubyte.gz')
test_data_filename = maybe_download('t10k-images-idx3-ubyte.gz')
test_labels_filename = maybe_download('t10k-labels-idx1-ubyte.gz')
# Extract it into numpy arrays.
train_data = extract_data(train_data_filename, 60000, dense=False)
train_labels = extract_labels(train_labels_filename, 60000, one_hot=True)
test_data = extract_data(test_data_filename, 10000, dense=False )
test_labels = extract_labels(test_labels_filename, 10000, one_hot=True)
# Generate a validation set.
validation_data = train_data[:VALIDATION_SIZE, ...]
validation_labels = train_labels[:VALIDATION_SIZE]
train_data = train_data[VALIDATION_SIZE:, ...]
train_labels = train_labels[VALIDATION_SIZE:]
num_epochs = NUM_EPOCHS
train_size = train_labels.shape[0]
# This is where training samples and labels are fed to the graph.
# These placeholder nodes will be fed a batch of training data at each
# training step using the {feed_dict} argument to the Run() call below.
train_data_node = tf.placeholder(
tf.float32,
shape=(BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
train_labels_node = tf.placeholder(tf.float32,
shape=(BATCH_SIZE, NUM_LABELS))
eval_data = tf.placeholder(
tf.float32,
shape=(EVAL_BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, NUM_CHANNELS))
# The variables below hold all the trainable weights. They are passed an
# initial value which will be assigned when when we call:
# {tf.initialize_all_variables().run()}
# First convolutional layer
conv1_weights = tf.Variable(
tf.truncated_normal([3, 3, NUM_CHANNELS, 32], # 5x5 filter, depth 32.
stddev=0.1,
seed=SEED))
conv1_biases = tf.Variable(tf.zeros([32]))
# Two second convolutional layers 5 x 5 filter, and 3 x 3 filters.
conv2_weights = tf.Variable(
tf.truncated_normal([5, 5, 32, 64],
stddev=0.1,
seed=SEED))
conv2_biases = tf.Variable(tf.constant(0.01, shape=[64]))
conv2_weights2 = tf.Variable(
tf.truncated_normal([3, 3, 32, 64],
stddev=0.1,
seed=SEED))
conv2_biases2 = tf.Variable(tf.constant(0.01, shape=[64]))
# First fully connected layer after conv layer
fc1_weights = tf.Variable( # fully connected, depth 512.
tf.truncated_normal(
[IMAGE_SIZE // 4 * IMAGE_SIZE // 4 * 128, 512],
stddev=0.05,
seed=SEED))
fc1_biases = tf.Variable(tf.constant(0.01, shape=[512]))
# Second fully connected layer
fc2_weights = tf.Variable(
tf.truncated_normal([512, 256],
stddev=0.05,
seed=SEED))
fc2_biases = tf.Variable(tf.constant(0.1, shape=[256]))
# Output layer
fc3_weights = tf.Variable(
tf.truncated_normal([256, NUM_LABELS],
stddev=0.04,
seed=SEED))
fc3_biases = tf.Variable(tf.constant(0.1, shape=[NUM_LABELS]))
# We will replicate the model structure for the training subgraph, as well
# as the evaluation subgraphs, while sharing the trainable parameters.
def model(data, train=False):
"""The Model definition."""
# 2D convolution, with 'SAME' padding (i.e. the output feature map has
# the same size as the input). Note that {strides} is a 4D array whose
# shape matches the data layout: [image index, y, x, depth].
conv = tf.nn.conv2d(data,
conv1_weights,
strides=[1, 1, 1, 1],
padding='SAME')
# Bias and rectified linear non-linearity.
relu = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
if train:
relu = tf.nn.dropout(relu, .5)
# Max pooling. The kernel size spec {ksize} also follows the layout of
# the data. Here we have a pooling window of 2, and a stride of 2.
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
conv = tf.nn.conv2d(pool,
conv2_weights,
strides=[1, 1, 1, 1],
padding='SAME')
relu = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases))
conv2 = tf.nn.conv2d(pool,
conv2_weights2,
strides=[1, 1, 1, 1],
padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases2))
pool = tf.nn.max_pool(relu,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
pool2 = tf.nn.max_pool(relu2,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
# Reshape the feature map cuboid into a 2D matrix to feed it to the
# fully connected layers.
pool = tf.concat(3, [pool, pool2])
pool_shape = pool.get_shape().as_list()
reshape = tf.reshape(
pool,
[pool_shape[0], pool_shape[1] * pool_shape[2] * pool_shape[3]])
# Fully connected layer. Note that the '+' operation automatically
# broadcasts the biases.
hidden = tf.nn.relu(tf.matmul(reshape, fc1_weights) + fc1_biases)
hidden = tf.nn.relu(tf.matmul(hidden, fc2_weights) + fc2_biases)
# Add a 50% dropout during training only. Dropout also scales
# activations such that no rescaling is needed at evaluation time.
if train:
hidden = tf.nn.dropout(hidden, 0.5, seed=SEED)
return tf.matmul(hidden, fc3_weights) + fc3_biases
def extract_filter (data):
conv = tf.nn.conv2d(data,
conv1_weights,
strides=[1, 1, 1, 1],
padding='SAME')
# Bias and rectified linear non-linearity.
relu1 = tf.nn.relu(tf.nn.bias_add(conv, conv1_biases))
# Max pooling. The kernel size spec {ksize} also follows the layout of
# the data. Here we have a pooling window of 2, and a stride of 2.
pool = tf.nn.max_pool(relu1,
ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1],
padding='SAME')
conv = tf.nn.conv2d(pool,
conv2_weights,
strides=[1, 1, 1, 1],
padding='SAME')
relu2 = tf.nn.relu(tf.nn.bias_add(conv, conv2_biases))
conv2 = tf.nn.conv2d(pool,
conv2_weights2,
strides=[1, 1, 1, 1],
padding='SAME')
relu3 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_biases2))
return relu1, relu2, relu3
# Training computation: logits + cross-entropy loss.
logits = model(train_data_node, True)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits, train_labels_node))
# L2 regularization for the fully connected parameters.
regularizers = (tf.nn.l2_loss(fc1_weights) + tf.nn.l2_loss(fc1_biases) +
tf.nn.l2_loss(fc2_weights) + tf.nn.l2_loss(fc2_biases) +
tf.nn.l2_loss(fc3_weights) + tf.nn.l2_loss(fc3_biases))
# Add the regularization term to the loss.
loss += 5e-4 * regularizers
# Optimizer: set up a variable that's incremented once per batch and
# controls the learning rate decay.
batch = tf.Variable(0)
# Decay once per epoch, using an exponential schedule starting at 0.01.
learning_rate = tf.train.exponential_decay(
0.01, # Base learning rate.
batch * BATCH_SIZE, # Current index into the dataset.
train_size, # Decay step.
0.95, # Decay rate.
staircase=True)
# Use simple momentum for the optimization.
optimizer = tf.train.MomentumOptimizer(learning_rate,
0.9).minimize(loss,
global_step=batch)
# Predictions for the current training minibatch.
train_prediction = tf.nn.softmax(logits)
# Predictions for the test and validation, which we'll compute less often.
eval_prediction = tf.nn.softmax(model(eval_data))
# Small utility function to evaluate a dataset by feeding batches of data to
# {eval_data} and pulling the results from {eval_predictions}.
# Saves memory and enables this to run on smaller GPUs.
def eval_in_batches(data, sess):
"""Get all predictions for a dataset by running it in small batches."""
size = data.shape[0]
if size < EVAL_BATCH_SIZE:
raise ValueError("batch size for evals larger than dataset: %d" % size)
predictions = numpy.ndarray(shape=(size, NUM_LABELS), dtype=numpy.float32)
for begin in xrange(0, size, EVAL_BATCH_SIZE):
end = begin + EVAL_BATCH_SIZE
if end <= size:
predictions[begin:end, :] = sess.run(
eval_prediction,
feed_dict={eval_data: data[begin:end, ...]})
else:
batch_predictions = sess.run(
eval_prediction,
feed_dict={eval_data: data[-EVAL_BATCH_SIZE:, ...]})
predictions[begin:, :] = batch_predictions[begin - size:, :]
return predictions
# Create a local session to run the training.
saver = tf.train.Saver()
start_time = time.time()
with tf.Session() as sess:
# Run all the initializers to prepare the trainable parameters.
if FLAGS.model:
saver.restore(sess, FLAGS.model) # If model exists, load it
else:
sess.run(tf.initialize_all_variables()) # If there is no model randomly initialize
if FLAGS.train:
# Loop through training steps.
for step in xrange(int(num_epochs * train_size) // BATCH_SIZE):
# Compute the offset of the current minibatch in the data.
# Note that we could use better randomization across epochs.
offset = (step * BATCH_SIZE) % (train_size - BATCH_SIZE)
batch_data = train_data[offset:(offset + BATCH_SIZE), ...]
batch_labels = train_labels[offset:(offset + BATCH_SIZE)]
# This dictionary maps the batch data (as a numpy array) to the
# node in the graph is should be fed to.
feed_dict = {train_data_node: batch_data,
train_labels_node: batch_labels}
# Run the graph and fetch some of the nodes.
_, l, lr, predictions = sess.run(
[optimizer, loss, learning_rate, train_prediction],
feed_dict=feed_dict)
if step % EVAL_FREQUENCY == 0:
elapsed_time = time.time() - start_time
start_time = time.time()
print('Step %d (epoch %.2f), %.1f ms' %
(step, float(step) * BATCH_SIZE / train_size,
1000 * elapsed_time / EVAL_FREQUENCY))
print('Minibatch loss: %.3f, learning rate: %.6f' % (l, lr))
print('Minibatch error: %.1f%%' % error_rate(predictions, batch_labels))
print('Validation error: %.1f%%' % error_rate(
eval_in_batches(validation_data, sess), validation_labels))
sys.stdout.flush()
# Finally print the result!
test_error = error_rate(eval_in_batches(test_data, sess), test_labels)
print('Test error: %.1f%%' % test_error)
print ('Optimization done')
print ('Save models')
if not tf.gfile.Exists("./conv_save"):
tf.gfile.MakeDirs("./conv_save")
saver_path = saver.save(sess, "./conv_save/model.ckpt")
print ('Successfully saved file: %s' % saver_path)
else: # If train flag is false, execute image extraction routine
print ("Filter extraction routine")
aa = train_data[1:2, :, :, :]
print (aa.shape)
# Run extract filter operations (conv1, conv2 and conv3 layers)
images = sess.run(extract_filter(train_data[1:2, :, :, :]))
print (images[2].shape)
plt.imshow (images[2][0, :, :, 32] * 255 + 255 / 2, cmap='gray')
# plt.imshow (images[2][0, :, :, 32], cmap='gray')
plt.show ()
# Save all outputs
for i in range (3):
filter_shape = images[i].shape
img_size = [filter_shape[1], filter_shape[2]]
print (img_size)
# new_im = Image.new()
if __name__ == '__main__':
tf.app.run()