-
Notifications
You must be signed in to change notification settings - Fork 16k
/
Copy pathtest_chat_models.py
624 lines (535 loc) Β· 29.2 KB
/
test_chat_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
"""Test ChatAnthropic chat model."""
import json
from base64 import b64encode
from typing import List, Optional
import pytest
import requests
from langchain_core.callbacks import CallbackManager
from langchain_core.messages import (
AIMessage,
AIMessageChunk,
BaseMessage,
BaseMessageChunk,
HumanMessage,
SystemMessage,
ToolMessage,
)
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.tools import tool
from pydantic import BaseModel, Field
from langchain_anthropic import ChatAnthropic, ChatAnthropicMessages
from tests.unit_tests._utils import FakeCallbackHandler
MODEL_NAME = "claude-3-5-sonnet-20240620"
def test_stream() -> None:
"""Test streaming tokens from Anthropic."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
full: Optional[BaseMessageChunk] = None
chunks_with_input_token_counts = 0
chunks_with_output_token_counts = 0
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
full = token if full is None else full + token
assert isinstance(token, AIMessageChunk)
if token.usage_metadata is not None:
if token.usage_metadata.get("input_tokens"):
chunks_with_input_token_counts += 1
elif token.usage_metadata.get("output_tokens"):
chunks_with_output_token_counts += 1
if chunks_with_input_token_counts != 1 or chunks_with_output_token_counts != 1:
raise AssertionError(
"Expected exactly one chunk with input or output token counts. "
"AIMessageChunk aggregation adds counts. Check that "
"this is behaving properly."
)
# check token usage is populated
assert isinstance(full, AIMessageChunk)
assert full.usage_metadata is not None
assert full.usage_metadata["input_tokens"] > 0
assert full.usage_metadata["output_tokens"] > 0
assert full.usage_metadata["total_tokens"] > 0
assert (
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
== full.usage_metadata["total_tokens"]
)
assert "stop_reason" in full.response_metadata
assert "stop_sequence" in full.response_metadata
async def test_astream() -> None:
"""Test streaming tokens from Anthropic."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
full: Optional[BaseMessageChunk] = None
chunks_with_input_token_counts = 0
chunks_with_output_token_counts = 0
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
full = token if full is None else full + token
assert isinstance(token, AIMessageChunk)
if token.usage_metadata is not None:
if token.usage_metadata.get("input_tokens"):
chunks_with_input_token_counts += 1
elif token.usage_metadata.get("output_tokens"):
chunks_with_output_token_counts += 1
if chunks_with_input_token_counts != 1 or chunks_with_output_token_counts != 1:
raise AssertionError(
"Expected exactly one chunk with input or output token counts. "
"AIMessageChunk aggregation adds counts. Check that "
"this is behaving properly."
)
# check token usage is populated
assert isinstance(full, AIMessageChunk)
assert full.usage_metadata is not None
assert full.usage_metadata["input_tokens"] > 0
assert full.usage_metadata["output_tokens"] > 0
assert full.usage_metadata["total_tokens"] > 0
assert (
full.usage_metadata["input_tokens"] + full.usage_metadata["output_tokens"]
== full.usage_metadata["total_tokens"]
)
assert "stop_reason" in full.response_metadata
assert "stop_sequence" in full.response_metadata
# test usage metadata can be excluded
model = ChatAnthropic(model_name=MODEL_NAME, stream_usage=False) # type: ignore[call-arg]
async for token in model.astream("hi"):
assert isinstance(token, AIMessageChunk)
assert token.usage_metadata is None
# check we override with kwarg
model = ChatAnthropic(model_name=MODEL_NAME) # type: ignore[call-arg]
assert model.stream_usage
async for token in model.astream("hi", stream_usage=False):
assert isinstance(token, AIMessageChunk)
assert token.usage_metadata is None
# Check expected raw API output
async_client = model._async_client
params: dict = {
"model": "claude-3-haiku-20240307",
"max_tokens": 1024,
"messages": [{"role": "user", "content": "hi"}],
"temperature": 0.0,
}
stream = await async_client.messages.create(**params, stream=True)
async for event in stream:
if event.type == "message_start":
assert event.message.usage.input_tokens > 1
# Note: this single output token included in message start event
# does not appear to contribute to overall output token counts. It
# is excluded from the total token count.
assert event.message.usage.output_tokens == 1
elif event.type == "message_delta":
assert event.usage.output_tokens > 1
else:
pass
async def test_abatch() -> None:
"""Test streaming tokens from ChatAnthropicMessages."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_abatch_tags() -> None:
"""Test batch tokens from ChatAnthropicMessages."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = await llm.abatch(
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
)
for token in result:
assert isinstance(token.content, str)
async def test_async_tool_use() -> None:
llm = ChatAnthropic(
model=MODEL_NAME,
)
llm_with_tools = llm.bind_tools(
[
{
"name": "get_weather",
"description": "Get weather report for a city",
"input_schema": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
}
]
)
response = await llm_with_tools.ainvoke("what's the weather in san francisco, ca")
assert isinstance(response, AIMessage)
assert isinstance(response.content, list)
assert isinstance(response.tool_calls, list)
assert len(response.tool_calls) == 1
tool_call = response.tool_calls[0]
assert tool_call["name"] == "get_weather"
assert isinstance(tool_call["args"], dict)
assert "location" in tool_call["args"]
# Test streaming
first = True
chunks = [] # type: ignore
async for chunk in llm_with_tools.astream(
"what's the weather in san francisco, ca"
):
chunks = chunks + [chunk]
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert len(chunks) > 1
assert isinstance(gathered, AIMessageChunk)
assert isinstance(gathered.tool_call_chunks, list)
assert len(gathered.tool_call_chunks) == 1
tool_call_chunk = gathered.tool_call_chunks[0]
assert tool_call_chunk["name"] == "get_weather"
assert isinstance(tool_call_chunk["args"], str)
assert "location" in json.loads(tool_call_chunk["args"])
def test_batch() -> None:
"""Test batch tokens from ChatAnthropicMessages."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_ainvoke() -> None:
"""Test invoke tokens from ChatAnthropicMessages."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
def test_invoke() -> None:
"""Test invoke tokens from ChatAnthropicMessages."""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)
def test_system_invoke() -> None:
"""Test invoke tokens with a system message"""
llm = ChatAnthropicMessages(model_name=MODEL_NAME) # type: ignore[call-arg, call-arg]
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"You are an expert cartographer. If asked, you are a cartographer. "
"STAY IN CHARACTER",
),
("human", "Are you a mathematician?"),
]
)
chain = prompt | llm
result = chain.invoke({})
assert isinstance(result.content, str)
def test_anthropic_call() -> None:
"""Test valid call to anthropic."""
chat = ChatAnthropic(model=MODEL_NAME)
message = HumanMessage(content="Hello")
response = chat.invoke([message])
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
def test_anthropic_generate() -> None:
"""Test generate method of anthropic."""
chat = ChatAnthropic(model=MODEL_NAME)
chat_messages: List[List[BaseMessage]] = [
[HumanMessage(content="How many toes do dogs have?")]
]
messages_copy = [messages.copy() for messages in chat_messages]
result: LLMResult = chat.generate(chat_messages)
assert isinstance(result, LLMResult)
for response in result.generations[0]:
assert isinstance(response, ChatGeneration)
assert isinstance(response.text, str)
assert response.text == response.message.content
assert chat_messages == messages_copy
def test_anthropic_streaming() -> None:
"""Test streaming tokens from anthropic."""
chat = ChatAnthropic(model=MODEL_NAME)
message = HumanMessage(content="Hello")
response = chat.stream([message])
for token in response:
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
def test_anthropic_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatAnthropic(
model=MODEL_NAME,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Write me a sentence with 10 words.")
for token in chat.stream([message]):
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
assert callback_handler.llm_streams > 1
async def test_anthropic_async_streaming_callback() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatAnthropic(
model=MODEL_NAME,
callback_manager=callback_manager,
verbose=True,
)
chat_messages: List[BaseMessage] = [
HumanMessage(content="How many toes do dogs have?")
]
async for token in chat.astream(chat_messages):
assert isinstance(token, AIMessageChunk)
assert isinstance(token.content, str)
assert callback_handler.llm_streams > 1
def test_anthropic_multimodal() -> None:
"""Test that multimodal inputs are handled correctly."""
chat = ChatAnthropic(model=MODEL_NAME)
messages: list[BaseMessage] = [
HumanMessage(
content=[
{
"type": "image_url",
"image_url": {
# langchain logo
"url": "", # noqa: E501
},
},
{"type": "text", "text": "What is this a logo for?"},
]
)
]
response = chat.invoke(messages)
assert isinstance(response, AIMessage)
assert isinstance(response.content, str)
num_tokens = chat.get_num_tokens_from_messages(messages)
assert num_tokens > 0
def test_streaming() -> None:
"""Test streaming tokens from Anthropic."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = ChatAnthropicMessages( # type: ignore[call-arg, call-arg]
model_name=MODEL_NAME, streaming=True, callback_manager=callback_manager
)
response = llm.generate([[HumanMessage(content="I'm Pickle Rick")]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
async def test_astreaming() -> None:
"""Test streaming tokens from Anthropic."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
llm = ChatAnthropicMessages( # type: ignore[call-arg, call-arg]
model_name=MODEL_NAME, streaming=True, callback_manager=callback_manager
)
response = await llm.agenerate([[HumanMessage(content="I'm Pickle Rick")]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
def test_tool_use() -> None:
llm = ChatAnthropic(model=MODEL_NAME)
llm_with_tools = llm.bind_tools(
[
{
"name": "get_weather",
"description": "Get weather report for a city",
"input_schema": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
}
]
)
response = llm_with_tools.invoke("what's the weather in san francisco, ca")
assert isinstance(response, AIMessage)
assert isinstance(response.content, list)
assert isinstance(response.tool_calls, list)
assert len(response.tool_calls) == 1
tool_call = response.tool_calls[0]
assert tool_call["name"] == "get_weather"
assert isinstance(tool_call["args"], dict)
assert "location" in tool_call["args"]
# Test streaming
input = "how are you? what's the weather in san francisco, ca"
first = True
chunks = [] # type: ignore
for chunk in llm_with_tools.stream(input):
chunks = chunks + [chunk]
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert len(chunks) > 1
assert isinstance(gathered.content, list)
assert len(gathered.content) == 2
tool_use_block = None
for content_block in gathered.content:
assert isinstance(content_block, dict)
if content_block["type"] == "tool_use":
tool_use_block = content_block
break
assert tool_use_block is not None
assert tool_use_block["name"] == "get_weather"
assert "location" in json.loads(tool_use_block["partial_json"])
assert isinstance(gathered, AIMessageChunk)
assert isinstance(gathered.tool_calls, list)
assert len(gathered.tool_calls) == 1
tool_call = gathered.tool_calls[0]
assert tool_call["name"] == "get_weather"
assert isinstance(tool_call["args"], dict)
assert "location" in tool_call["args"]
assert tool_call["id"] is not None
# Test passing response back to model
stream = llm_with_tools.stream(
[
input,
gathered,
ToolMessage(content="sunny and warm", tool_call_id=tool_call["id"]),
]
)
chunks = [] # type: ignore
first = True
for chunk in stream:
chunks = chunks + [chunk]
if first:
gathered = chunk
first = False
else:
gathered = gathered + chunk # type: ignore
assert len(chunks) > 1
class GenerateUsername(BaseModel):
"Get a username based on someone's name and hair color."
name: str
hair_color: str
def test_disable_parallel_tool_calling() -> None:
llm = ChatAnthropic(model="claude-3-5-sonnet-20241022")
llm_with_tools = llm.bind_tools([GenerateUsername], parallel_tool_calls=False)
result = llm_with_tools.invoke(
"Use the GenerateUsername tool to generate user names for:\n\n"
"Sally with green hair\n"
"Bob with blue hair"
)
assert isinstance(result, AIMessage)
assert len(result.tool_calls) == 1
def test_anthropic_with_empty_text_block() -> None:
"""Anthropic SDK can return an empty text block."""
@tool
def type_letter(letter: str) -> str:
"""Type the given letter."""
return "OK"
model = ChatAnthropic(model="claude-3-opus-20240229", temperature=0).bind_tools(
[type_letter]
)
messages = [
SystemMessage(
content="Repeat the given string using the provided tools. Do not write "
"anything else or provide any explanations. For example, "
"if the string is 'abc', you must print the "
"letters 'a', 'b', and 'c' one at a time and in that order. "
),
HumanMessage(content="dog"),
AIMessage(
content=[
{"text": "", "type": "text"},
{
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
"input": {"letter": "d"},
"name": "type_letter",
"type": "tool_use",
},
],
tool_calls=[
{
"name": "type_letter",
"args": {"letter": "d"},
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
"type": "tool_call",
},
],
),
ToolMessage(content="OK", tool_call_id="toolu_01V6d6W32QGGSmQm4BT98EKk"),
]
model.invoke(messages)
def test_with_structured_output() -> None:
llm = ChatAnthropic(
model="claude-3-opus-20240229",
)
structured_llm = llm.with_structured_output(
{
"name": "get_weather",
"description": "Get weather report for a city",
"input_schema": {
"type": "object",
"properties": {"location": {"type": "string"}},
},
}
)
response = structured_llm.invoke("what's the weather in san francisco, ca")
assert isinstance(response, dict)
assert response["location"]
def test_get_num_tokens_from_messages() -> None:
llm = ChatAnthropic(model="claude-3-5-sonnet-20241022")
# Test simple case
messages = [
SystemMessage(content="You are a scientist"),
HumanMessage(content="Hello, Claude"),
]
num_tokens = llm.get_num_tokens_from_messages(messages)
assert num_tokens > 0
# Test tool use
@tool(parse_docstring=True)
def get_weather(location: str) -> str:
"""Get the current weather in a given location
Args:
location: The city and state, e.g. San Francisco, CA
"""
return "Sunny"
messages = [
HumanMessage(content="What's the weather like in San Francisco?"),
]
num_tokens = llm.get_num_tokens_from_messages(messages, tools=[get_weather])
assert num_tokens > 0
messages = [
HumanMessage(content="What's the weather like in San Francisco?"),
AIMessage(
content=[
{"text": "Let's see.", "type": "text"},
{
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
"input": {"location": "SF"},
"name": "get_weather",
"type": "tool_use",
},
],
tool_calls=[
{
"name": "get_weather",
"args": {"location": "SF"},
"id": "toolu_01V6d6W32QGGSmQm4BT98EKk",
"type": "tool_call",
},
],
),
ToolMessage(content="Sunny", tool_call_id="toolu_01V6d6W32QGGSmQm4BT98EKk"),
]
num_tokens = llm.get_num_tokens_from_messages(messages, tools=[get_weather])
assert num_tokens > 0
class GetWeather(BaseModel):
"""Get the current weather in a given location"""
location: str = Field(..., description="The city and state, e.g. San Francisco, CA")
@pytest.mark.parametrize("tool_choice", ["GetWeather", "auto", "any"])
def test_anthropic_bind_tools_tool_choice(tool_choice: str) -> None:
chat_model = ChatAnthropic(
model=MODEL_NAME,
)
chat_model_with_tools = chat_model.bind_tools([GetWeather], tool_choice=tool_choice)
response = chat_model_with_tools.invoke("what's the weather in ny and la")
assert isinstance(response, AIMessage)
def test_pdf_document_input() -> None:
url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf"
data = b64encode(requests.get(url).content).decode()
result = ChatAnthropic(model=MODEL_NAME).invoke(
[
HumanMessage(
[
"summarize this document",
{
"type": "document",
"source": {
"type": "base64",
"data": data,
"media_type": "application/pdf",
},
},
]
)
]
)
assert isinstance(result, AIMessage)
assert isinstance(result.content, str)
assert len(result.content) > 0