-
Notifications
You must be signed in to change notification settings - Fork 20
/
distance_correlation.py
77 lines (63 loc) · 1.81 KB
/
distance_correlation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 15 16:31:46 2018
@author: lankuohsing
"""
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 15 14:00:29 2012
Author: Josef Perktold
License: MIT, BSD-3 (for statsmodels)
http://en.wikipedia.org/wiki/Distance_correlation
Yaroslav and Satrajit on sklearn mailing list
Univariate only, distance measure is just absolute distance
Note: Same as R package energy DCOR, except DCOR reports sqrt of all returns of dcov_all
"""
import numpy as np
from scipy.stats import pearsonr
def dist(x, y):
#1d only
return np.abs(x[:, None] - y)
def d_n(x):
d = dist(x, x)
dn = d - d.mean(0) - d.mean(1)[:,None] + d.mean()
return dn
def dcov_all(x, y):
dnx = d_n(x)
dny = d_n(y)
denom = np.product(dnx.shape)
dc = (dnx * dny).sum() / denom
dvx = (dnx**2).sum() / denom
dvy = (dny**2).sum() / denom
dr = dc / (np.sqrt(dvx) * np.sqrt(dvy))
return dc, dr, dvx, dvy
import matplotlib.pyplot as plt
fig = plt.figure()
for case in range(1,5):
np.random.seed(9854673)
x = np.linspace(-1,1, 501)
if case == 1:
y = - x**2 + 0.2 * np.random.rand(len(x))
elif case == 2:
y = np.cos(x*2*np.pi) + 0.1 * np.random.rand(len(x))
elif case == 3:
x = np.sin(x*2*np.pi) + 0.0 * np.random.rand(len(x)) #circle
elif case == 4:
x = np.sin(x*1.5*np.pi) + 0.1 * np.random.rand(len(x)) #bretzel
dc, dr, dvx, dvy = dcov_all(x, y)
print( dc, dr, dvx, dvy)
per_coe,_= pearsonr(x, y)
print(per_coe)
ax = fig.add_subplot(2,2, case)
#ax.set_xlim(-1, 1)
ax.plot(x, y, '.')
yl = ax.get_ylim()
ax.text(-0.95, yl[0] + 0.9 * np.diff(yl), 'dr=%4.2f' % dr)
plt.show()
# In[]
x = np.linspace(0,2, 501)
y=x*x-x
dc, dr, dvx, dvy = dcov_all(x, y)
print( dc, dr, dvx, dvy)
per_coe,_= pearsonr(x, y)
print(per_coe)