-
Notifications
You must be signed in to change notification settings - Fork 1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add GaussianProcess #44
Comments
import AbstractGPs
import StatsBase
using JuMP
# Univariate example
x = 2π .* rand(20)
y = sin.(x)
fx = AbstractGPs.GP(AbstractGPs.Matern32Kernel())(x, 0.001)
p_fx = AbstractGPs.posterior(fx, y)
StatsBase.mean_and_var(p_fx([0.4]))
# Univariate example
x = 2π .* rand(20, 2)
y = vec(sum(sin.(x); dims = 2))
kernel = AbstractGPs.Matern32Kernel()
fx = AbstractGPs.GP(kernel)(AbstractGPs.RowVecs(x), 0.01)
p_fx = AbstractGPs.posterior(fx, y)
StatsBase.mean_and_var(p_fx(AbstractGPs.RowVecs([0.4 0.5]))) A example like
is going to need a bunch of missign methods
|
import AbstractGPs
import Distributions
import Ipopt
import Plots
import StatsBase
using JuMP
function add_gp_quantile_operator(model, p_fx, input_dim, quantile)
function gp_q(x...)
λ = Distributions.invlogcdf(Distributions.Normal(0, 1), log(quantile))
μ, σ² = only.(StatsBase.mean_and_var(p_fx(collect(x))))
return only(μ) + λ * sqrt(σ²)
end
return JuMP.add_nonlinear_operator(model, input_dim, gp_q; name = :op_gp_q)
end
# Univariate example
f = x -> sin(x)
x = 2π .* (0.0:0.1:1.0)
y = f.(x)
fx = AbstractGPs.GP(AbstractGPs.Matern32Kernel())(x, 0.1)
p_fx = AbstractGPs.posterior(fx, y)
model = Model(Ipopt.Optimizer)
@variable(model, 1 <= x_input <= 6, start = 3)
@objective(model, Max, x_input)
op_gp_quantile = add_gp_quantile_operator(model, p_fx, 1, 0.9)
@constraint(model, op_gp_quantile(x_input) >= 0.5)
optimize!(model)
@assert is_solved_and_feasible(model)
Plots.plot(0:0.1:2π+0.1, f; label = "True function")
Plots.scatter!(x, y; label = "Data")
Plots.plot!(0:0.1:2π+0.1, p_fx; label = "GP")
Plots.hline!([0.5]; label = false)
Plots.vline!([value(x_input)]; label = false) |
Or something like import AbstractGPs
import Distributions
import Ipopt
import MathOptAI
import Plots
import StatsBase
using JuMP
struct QuantileOperator{GP} <: MathOptAI.AbstractPredictor
p_fx::GP
quantile::Float64
end
function MathOptAI.add_predictor(
model::JuMP.Model,
predictor::QuantileOperator,
x::Vector,
)
y = JuMP.@variable(model)
N = Distributions.Normal(0, 1)
λ = Distributions.invlogcdf(N, log(predictor.quantile))
function gp_q(x...)
input_x = collect(x)
if length(input_x) > 1
input_x = AbstractGPs.RowVecs(x')
end
μ, σ² = only.(StatsBase.mean_and_var(predictor.p_fx(input_x)))
return only(μ) + λ * sqrt(σ²)
end
input_dim = length(x)
op = JuMP.add_nonlinear_operator(model, input_dim, gp_q; name = :op_gp_q)
JuMP.@constraint(model, y == op(x...))
return [y]
end
# Univariate example
f = x -> sin(x)
x = 2π .* (0.0:0.1:1.0)
y = f.(x)
fx = AbstractGPs.GP(AbstractGPs.Matern32Kernel())(x, 0.1)
p_fx = AbstractGPs.posterior(fx, y)
model = Model(Ipopt.Optimizer)
@variable(model, 1 <= x_input[1:1] <= 6, start = 3)
@objective(model, Max, x_input[1])
predictor = QuantileOperator(p_fx, 0.9)
y_output = MathOptAI.add_predictor(model, predictor, x_input)
set_lower_bound(only(y_output), 0.5)
optimize!(model)
@assert is_solved_and_feasible(model)
Plots.plot(0:0.1:2π+0.1, f; label = "True function")
Plots.scatter!(x, y; label = "Data")
Plots.plot!(0:0.1:2π+0.1, p_fx; label = "GP")
Plots.hline!([0.5]; label = false)
Plots.vline!(value.(x_input); label = false) |
Merged
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
See https://arxiv.org/pdf/2310.00763
The text was updated successfully, but these errors were encountered: