-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtest.py
174 lines (152 loc) · 7.6 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
#!/usr/bin/env python3
import os
import sys
import time
import argparse
from dataclasses import dataclass
from typing import List
import string
import torch
from tqdm import tqdm
from strhub.data.module import SceneTextDataModule
from strhub.models.utils import load_from_checkpoint, parse_model_args
@dataclass
class Result:
dataset: str
num_samples: int
accuracy: float
ned: float
confidence: float
label_length: float
def print_results_table(results: List[Result], file=None):
w = max(map(len, map(getattr, results, ['dataset'] * len(results))))
w = max(w, len('Dataset'), len('Combined'))
print('| {:<{w}} | # samples | Accuracy | 1 - NED | Confidence | Label Length |'.format('Dataset', w=w), file=file)
print('|:{:-<{w}}:|----------:|---------:|--------:|-----------:|-------------:|'.format('----', w=w), file=file)
c = Result('Combined', 0, 0, 0, 0, 0)
for res in results:
c.num_samples += res.num_samples
c.accuracy += res.num_samples * res.accuracy
c.ned += res.num_samples * res.ned
c.confidence += res.num_samples * res.confidence
c.label_length += res.num_samples * res.label_length
print(f'| {res.dataset:<{w}} | {res.num_samples:>9} | {res.accuracy:>8.2f} | {res.ned:>7.2f} '
f'| {res.confidence:>10.2f} | {res.label_length:>12.2f} |', file=file)
c.accuracy /= c.num_samples
c.ned /= c.num_samples
c.confidence /= c.num_samples
c.label_length /= c.num_samples
print('|-{:-<{w}}-|-----------|----------|---------|------------|--------------|'.format('----', w=w), file=file)
print(f'| {c.dataset:<{w}} | {c.num_samples:>9} | {c.accuracy:>8.2f} | {c.ned:>7.2f} '
f'| {c.confidence:>10.2f} | {c.label_length:>12.2f} |', file=file)
@torch.inference_mode()
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', help="Model checkpoint (or 'pretrained=<model_id>')",
default="/path/to/your/clip4str_b_plus.ckpt")
parser.add_argument('--data_root', default='/path/to/your/dataset')
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--cased', action='store_true', default=False, help='Cased comparison')
parser.add_argument('--punctuation', action='store_true', default=False, help='Check punctuation')
parser.add_argument('--new', action='store_true', default=False, help='Evaluate on new benchmark datasets')
parser.add_argument('--rotation', type=int, default=0, help='Angle of rotation (counter clockwise) in degrees.')
parser.add_argument('--device', default='cuda')
parser.add_argument('--clip_model_path', type=str,
default="./clip/ViT-B-16.pt",
help='path to the clip model')
parser.add_argument('--clip_refine', action='store_true', default=False,
help='use clip to refine the predicted results')
parser.add_argument('--sample_K', type=int, default=5,
help='K of top-K when performing CLIP post-refinement')
parser.add_argument('--sample_K2', type=int, default=5,
help='K of top-K choosed predictions when performing CLIP post-refinement')
parser.add_argument('--sample_total', type=int, default=50,
help='the number of samples when sample from the predicted probability distribution')
parser.add_argument('--sample_prompt', type=str, default=None,
help='prompt for CLIP')
parser.add_argument('--alpha', type=float, default=0.1,
help='prompt for CLIP')
args, unknown = parser.parse_known_args()
kwargs = parse_model_args(unknown)
print(args)
if os.path.isdir(args.checkpoint):
ckpts = [x for x in os.listdir(args.checkpoint) if 'val' in x]
assert len(ckpts) >= 1
val_acc = [float(x.split('-')[-2].split('=')[-1]) for x in ckpts]
best_ckpt = os.path.join(args.checkpoint, ckpts[val_acc.index(max(val_acc))])
best_epoch = int(best_ckpt.split('/')[-1].split('-')[0].split('=')[-1])
print('The val accuracy is best {}-{}e'.format(max(val_acc), best_epoch))
args.checkpoint = best_ckpt
charset_test = string.digits + string.ascii_lowercase
if args.cased:
charset_test += string.ascii_uppercase
if args.punctuation:
charset_test += string.punctuation
kwargs.update({'charset_test': charset_test})
print(f'Additional keyword arguments: {kwargs}')
print('load weights from checkpoint {}'.format(args.checkpoint))
model = load_from_checkpoint(args.checkpoint, **kwargs).eval().to(args.device)
hp = model.hparams
datamodule = SceneTextDataModule(args.data_root, '_unused_', hp.img_size, hp.max_label_length, hp.charset_train,
hp.charset_test, args.batch_size, args.num_workers, False, rotation=args.rotation)
if args.new:
test_set = SceneTextDataModule.TEST_NEW
else:
test_set = SceneTextDataModule.TEST_BENCHMARK_SUB
test_set = sorted(set(test_set))
start_time = time.time()
results = {}
max_width = max(map(len, test_set))
all_total = 0
for name, dataloader in datamodule.test_dataloaders(test_set).items():
total = 0
correct = 0
ned = 0
confidence = 0
label_length = 0
for imgs, labels in tqdm(iter(dataloader), desc=f'{name:>{max_width}}'):
res = model.test_step((imgs.to(model.device), labels), -1,
clip_model_path=args.clip_model_path,
clip_refine=args.clip_refine,
sample_K=args.sample_K,
sample_K2=args.sample_K2,
sample_total=args.sample_total,
sample_prompt=args.sample_prompt,
alpha=args.alpha
)['output']
total += res.num_samples
correct += res.correct
ned += res.ned
confidence += res.confidence
label_length += res.label_length
all_total += total
accuracy = 100 * correct / total
mean_ned = 100 * (1 - ned / total)
mean_conf = 100 * confidence / total
mean_label_length = label_length / total
results[name] = Result(name, total, accuracy, mean_ned, mean_conf, mean_label_length)
if args.new:
result_groups = {
'Union14M-Benchmark (Subset)': SceneTextDataModule.TEST_NEW,
}
else:
result_groups = {
'Six-Common-Benchmark (Subset)': SceneTextDataModule.TEST_BENCHMARK_SUB,
}
total_time = time.time() - start_time
if args.clip_refine:
log_filename = args.checkpoint + '.log_K{}-{}-{}_prompt{}_alpha{}_new{}.txt'.format(
args.sample_K2, args.sample_K, args.sample_total, args.sample_prompt, args.alpha, str(args.new))
else:
log_filename = args.checkpoint + '.log_new{}.txt'.format(str(args.new))
with open(log_filename, 'w') as f:
for out in [f, sys.stdout]:
for group, subset in result_groups.items():
print(f'{group} set:', file=out)
print_results_table([results[s] for s in subset], out)
print('\n', file=out)
print("Time: Total {}s, Average {}ms. Total samples {}.".format(total_time, total_time * 1000.0 / all_total,
all_total), file=out)
if __name__ == '__main__':
main()