-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathtrain.py
276 lines (209 loc) · 11.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import argparse
import tensorflow as tf
import numpy as np
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" # see issue #152
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
print BASE_DIR
sys.path.append(BASE_DIR)
sys.path.append(os.path.dirname(BASE_DIR))
sys.path.append(os.path.join(BASE_DIR, '../../'))
sys.path.append(os.path.join(BASE_DIR, '../../utils'))
sys.path.append(os.path.join(BASE_DIR, '../../models'))
import provider
from models import model
# Parsing Arguments
parser = argparse.ArgumentParser()
# Experiment Settings
parser.add_argument('--gpu', type=str, default="1", help='GPU to use [default: GPU 1]')
parser.add_argument('--wd', type=float, default=0.9, help='Weight Decay [Default: 0.0]')
parser.add_argument('--epoch', type=int, default=200, help='Number of epochs [default: 50]')
parser.add_argument('--batch', type=int, default=4, help='Batch Size during training [default: 4]')
parser.add_argument('--point_num', type=int, default=4096, help='Point Number')
parser.add_argument('--group_num', type=int, default=50, help='Maximum Group Number in one pc')
parser.add_argument('--cate_num', type=int, default=13, help='Number of categories')
parser.add_argument('--margin_same', type=float, default=10., help='Double hinge loss margin: same semantic')
parser.add_argument('--margin_diff', type=float, default=80., help='Double hinge loss margin: different semantic')
# Input&Output Settings
parser.add_argument('--output_dir', type=str, default='checkpoint/stanford_sem_seg', help='Directory that stores all training logs and trained models')
parser.add_argument('--input_list', type=str, default='data/train_hdf5_file_list.txt', help='Input data list file')
parser.add_argument('--restore_model', type=str, default='checkpoint/stanford_ins_seg', help='Pretrained model')
FLAGS = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu
TRAINING_FILE_LIST = FLAGS.input_list
PRETRAINED_MODEL_PATH = os.path.join(FLAGS.restore_model, 'trained_models/')
POINT_NUM = FLAGS.point_num
BATCH_SIZE = FLAGS.batch
OUTPUT_DIR = FLAGS.output_dir
if not os.path.exists(OUTPUT_DIR):
os.makedirs(OUTPUT_DIR)
NUM_GROUPS = FLAGS.group_num
NUM_CATEGORY = FLAGS.cate_num
print('#### Batch Size: {0}'.format(BATCH_SIZE))
print('#### Point Number: {0}'.format(POINT_NUM))
print('#### Training using GPU: {0}'.format(FLAGS.gpu))
DECAY_STEP = 800000.
DECAY_RATE = 0.5
LEARNING_RATE_CLIP = 1e-6
BASE_LEARNING_RATE = 1e-4
MOMENTUM = 0.9
TRAINING_EPOCHES = FLAGS.epoch
MARGINS = [FLAGS.margin_same, FLAGS.margin_diff]
print('### Training epoch: {0}'.format(TRAINING_EPOCHES))
MODEL_STORAGE_PATH = os.path.join(OUTPUT_DIR, 'trained_models')
if not os.path.exists(MODEL_STORAGE_PATH):
os.mkdir(MODEL_STORAGE_PATH)
LOG_STORAGE_PATH = os.path.join(OUTPUT_DIR, 'logs')
if not os.path.exists(LOG_STORAGE_PATH):
os.mkdir(LOG_STORAGE_PATH)
SUMMARIES_FOLDER = os.path.join(OUTPUT_DIR, 'summaries')
if not os.path.exists(SUMMARIES_FOLDER):
os.mkdir(SUMMARIES_FOLDER)
LOG_DIR = FLAGS.output_dir
if not os.path.exists(LOG_DIR): os.mkdir(LOG_DIR)
os.system('cp %s %s' % (os.path.join(BASE_DIR, 'models/model.py'), LOG_DIR)) # bkp of model def
os.system('cp %s %s' % (os.path.join(BASE_DIR, 'train.py'), LOG_DIR)) # bkp of train procedure
def printout(flog, data):
print(data)
flog.write(data + '\n')
def train():
with tf.Graph().as_default():
with tf.device('/gpu:' + str(FLAGS.gpu)):
batch = tf.Variable(0, trainable=False, name='batch')
learning_rate = tf.train.exponential_decay(
BASE_LEARNING_RATE, # base learning rate
batch * BATCH_SIZE, # global_var indicating the number of steps
DECAY_STEP, # step size
DECAY_RATE, # decay rate
staircase=True # Stair-case or continuous decreasing
)
learning_rate = tf.maximum(learning_rate, LEARNING_RATE_CLIP)
lr_op = tf.summary.scalar('learning_rate', learning_rate)
pointclouds_ph, ptsseglabel_ph, ptsgroup_label_ph, pts_seglabel_mask_ph, pts_group_mask_ph, alpha_ph = \
model.placeholder_inputs(BATCH_SIZE, POINT_NUM, NUM_GROUPS, NUM_CATEGORY)
is_training_ph = tf.placeholder(tf.bool, shape=())
labels = {'ptsgroup': ptsgroup_label_ph,
'semseg': ptsseglabel_ph,
'semseg_mask': pts_seglabel_mask_ph,
'group_mask': pts_group_mask_ph}
net_output = model.get_model(pointclouds_ph, is_training_ph, group_cate_num=NUM_CATEGORY, m=MARGINS[0])
loss, grouperr, same, same_cnt, diff, diff_cnt, pos, pos_cnt = model.get_loss(net_output, labels, alpha_ph, MARGINS)
total_training_loss_ph = tf.placeholder(tf.float32, shape=())
group_err_loss_ph = tf.placeholder(tf.float32, shape=())
total_train_loss_sum_op = tf.summary.scalar('total_training_loss', total_training_loss_ph)
group_err_op = tf.summary.scalar('group_err_loss', group_err_loss_ph)
train_variables = tf.trainable_variables()
trainer = tf.train.AdamOptimizer(learning_rate)
train_op = trainer.minimize(loss, var_list=train_variables, global_step=batch)
loader = tf.train.Saver([v for v in tf.all_variables()#])
if
('conf_logits' not in v.name) and
('Fsim' not in v.name) and
('Fsconf' not in v.name) and
('batch' not in v.name)
])
saver = tf.train.Saver([v for v in tf.all_variables()])
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
sess = tf.Session(config=config)
init = tf.global_variables_initializer()
sess.run(init)
train_writer = tf.summary.FileWriter(SUMMARIES_FOLDER + '/train', sess.graph)
train_file_list = provider.getDataFiles(TRAINING_FILE_LIST)
num_train_file = len(train_file_list)
fcmd = open(os.path.join(LOG_STORAGE_PATH, 'cmd.txt'), 'w')
fcmd.write(str(FLAGS))
fcmd.close()
flog = open(os.path.join(LOG_STORAGE_PATH, 'log.txt'), 'w')
ckptstate = tf.train.get_checkpoint_state(PRETRAINED_MODEL_PATH)
if ckptstate is not None:
LOAD_MODEL_FILE = os.path.join(PRETRAINED_MODEL_PATH, os.path.basename(ckptstate.model_checkpoint_path))
loader.restore(sess, LOAD_MODEL_FILE)
printout(flog, "Model loaded in file: %s" % LOAD_MODEL_FILE)
else:
printout(flog, "Fail to load modelfile: %s" % PRETRAINED_MODEL_PATH)
train_file_idx = np.arange(0, len(train_file_list))
np.random.shuffle(train_file_idx)
## load all data into memory
all_data = []
all_group = []
all_seg = []
for i in range(num_train_file):
cur_train_filename = train_file_list[train_file_idx[i]]
# printout(flog, 'Loading train file ' + cur_train_filename)
cur_data, cur_group, _, cur_seg = provider.loadDataFile_with_groupseglabel_stanfordindoor(cur_train_filename)
all_data += [cur_data]
all_group += [cur_group]
all_seg += [cur_seg]
all_data = np.concatenate(all_data,axis=0)
all_group = np.concatenate(all_group,axis=0)
all_seg = np.concatenate(all_seg,axis=0)
num_data = all_data.shape[0]
num_batch = num_data // BATCH_SIZE
def train_one_epoch(epoch_num):
### NOTE: is_training = False: We do not update bn parameters during training due to the small batch size. This requires pre-training PointNet with large batchsize (say 32).
is_training = False
order = np.arange(num_data)
np.random.shuffle(order)
total_loss = 0.0
total_grouperr = 0.0
total_same = 0.0
total_diff = 0.0
total_pos = 0.0
same_cnt0 = 0
for j in range(num_batch):
begidx = j * BATCH_SIZE
endidx = (j + 1) * BATCH_SIZE
pts_label_one_hot, pts_label_mask = model.convert_seg_to_one_hot(all_seg[order[begidx: endidx]])
pts_group_label, pts_group_mask = model.convert_groupandcate_to_one_hot(all_group[order[begidx: endidx]])
feed_dict = {
pointclouds_ph: all_data[order[begidx: endidx], ...],
ptsseglabel_ph: pts_label_one_hot,
ptsgroup_label_ph: pts_group_label,
pts_seglabel_mask_ph: pts_label_mask,
pts_group_mask_ph: pts_group_mask,
is_training_ph: is_training,
alpha_ph: min(10., (float(epoch_num) / 5.) * 2. + 2.),
}
_, loss_val, simmat_val, grouperr_val, same_val, same_cnt_val, diff_val, diff_cnt_val, pos_val, pos_cnt_val = sess.run([train_op, loss, net_output['simmat'], grouperr, same, same_cnt, diff, diff_cnt, pos, pos_cnt], feed_dict=feed_dict)
total_loss += loss_val
total_grouperr += grouperr_val
total_diff += (diff_val / diff_cnt_val)
if same_cnt_val > 0:
total_same += same_val / same_cnt_val
same_cnt0 += 1
total_pos += pos_val / pos_cnt_val
if j % 10 == 9:
printout(flog, 'Batch: %d, loss: %f, grouperr: %f, same: %f, diff: %f, pos: %f' % (j, total_loss/10, total_grouperr/10, total_same/same_cnt0, total_diff/10, total_pos/10))
lr_sum, batch_sum, train_loss_sum, group_err_sum = sess.run( \
[lr_op, batch, total_train_loss_sum_op, group_err_op], \
feed_dict={total_training_loss_ph: total_loss / 10.,
group_err_loss_ph: total_grouperr / 10., })
train_writer.add_summary(train_loss_sum, batch_sum)
train_writer.add_summary(lr_sum, batch_sum)
train_writer.add_summary(group_err_sum, batch_sum)
total_grouperr = 0.0
total_loss = 0.0
total_diff = 0.0
total_same = 0.0
total_pos = 0.0
same_cnt0 = 0
cp_filename = saver.save(sess,
os.path.join(MODEL_STORAGE_PATH, 'epoch_' + str(epoch_num + 1) + '.ckpt'))
printout(flog, 'Successfully store the checkpoint model into ' + cp_filename)
if not os.path.exists(MODEL_STORAGE_PATH):
os.mkdir(MODEL_STORAGE_PATH)
for epoch in range(TRAINING_EPOCHES):
printout(flog, '\n>>> Training for the epoch %d/%d ...' % (epoch, TRAINING_EPOCHES))
train_file_idx = np.arange(0, len(train_file_list))
np.random.shuffle(train_file_idx)
train_one_epoch(epoch)
flog.flush()
cp_filename = saver.save(sess,
os.path.join(MODEL_STORAGE_PATH, 'epoch_' + str(epoch + 1) + '.ckpt'))
printout(flog, 'Successfully store the checkpoint model into ' + cp_filename)
flog.close()
if __name__ == '__main__':
train()