-
Notifications
You must be signed in to change notification settings - Fork 62
/
Copy pathvalid.py
159 lines (121 loc) · 6.96 KB
/
valid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import argparse
import tensorflow as tf
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" # see issue #152
import provider
from utils.test_utils import *
from models import model
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=str, default="1", help='GPU to use [default: GPU 1]')
parser.add_argument('--verbose', action='store_true', help='if specified, use depthconv')
parser.add_argument('--input_list', type=str, default='/media/hdd2/data/pointnet/stanfordindoor/valid_hdf5_file_list.txt', help='Validation data list')
parser.add_argument('--restore_dir', type=str, default='checkpoint/stanford_ins_seg_groupmask11_fromgroup_recipweight_nopow2_lr4', help='Directory that stores all training logs and trained models')
FLAGS = parser.parse_args()
PRETRAINED_MODEL_PATH = os.path.join(FLAGS.restore_dir,'trained_models/')
gpu_to_use = 0
os.environ["CUDA_VISIBLE_DEVICES"] = FLAGS.gpu
RESTORE_DIR = FLAGS.restore_dir
OUTPUT_DIR = os.path.join(FLAGS.restore_dir, 'valid_results')
if not os.path.exists(OUTPUT_DIR):
os.mkdir(OUTPUT_DIR)
OUTPUT_VERBOSE = FLAGS.verbose # If true, output similarity
# MAIN SCRIPT
POINT_NUM = 4096 # the max number of points in the all testing data shapes
BATCH_SIZE = 1
NUM_GROUPS = 50
NUM_CATEGORY = 13
TESTING_FILE_LISTFILE = FLAGS.input_list
test_file_list = provider.getDataFiles(TESTING_FILE_LISTFILE)
len_pts_files = len(test_file_list)
def printout(flog, data):
print(data)
flog.write(data + '\n')
def predict():
is_training = False
with tf.device('/gpu:' + str(gpu_to_use)):
is_training_ph = tf.placeholder(tf.bool, shape=())
pointclouds_ph, ptsseglabel_ph, ptsgroup_label_ph, _, _, _ = \
model.placeholder_inputs(BATCH_SIZE, POINT_NUM, NUM_GROUPS, NUM_CATEGORY)
group_mat_label = tf.matmul(ptsgroup_label_ph, tf.transpose(ptsgroup_label_ph, perm=[0, 2, 1]))
net_output = model.get_model(pointclouds_ph, is_training_ph, group_cate_num=NUM_CATEGORY)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
with tf.Session(config=config) as sess:
# Restore variables from disk.
ckptstate = tf.train.get_checkpoint_state(PRETRAINED_MODEL_PATH)
if ckptstate is not None:
LOAD_MODEL_FILE = os.path.join(PRETRAINED_MODEL_PATH,os.path.basename(ckptstate.model_checkpoint_path))
saver.restore(sess, LOAD_MODEL_FILE)
print ("Model loaded in file: %s" % LOAD_MODEL_FILE)
else:
print ("Fail to load modelfile: %s" % PRETRAINED_MODEL_PATH)
ths = np.zeros(NUM_CATEGORY)
ths_ = np.zeros(NUM_CATEGORY)
cnt = np.zeros(NUM_CATEGORY)
min_groupsize = np.zeros(NUM_CATEGORY)
min_groupsize_cnt = np.zeros(NUM_CATEGORY)
for shape_idx in range(len_pts_files):
cur_train_filename = test_file_list[shape_idx]
if not os.path.exists(cur_train_filename):
continue
cur_data, cur_group, _, cur_seg = provider.loadDataFile_with_groupseglabel_stanfordindoor(cur_train_filename)
if OUTPUT_VERBOSE:
pts = np.reshape(cur_data, [-1,9])
output_point_cloud_rgb(pts[:, 6:], pts[:, 3:6], os.path.join(OUTPUT_DIR, '%d_pts.obj' % (shape_idx)))
pts_label_one_hot, pts_label_mask = model.convert_seg_to_one_hot(cur_seg)
pts_group_label, _ = model.convert_groupandcate_to_one_hot(cur_group)
num_data = cur_data.shape[0]
cur_seg_flatten = np.reshape(cur_seg, [-1])
un, indices = np.unique(cur_group, return_index=True)
for iu, u in enumerate(un):
groupsize = np.sum(cur_group == u)
groupcate = cur_seg_flatten[indices[iu]]
min_groupsize[groupcate] += groupsize
# print groupsize, min_groupsize[groupcate]/min_groupsize_cnt[groupcate]
min_groupsize_cnt[groupcate] += 1
for j in range(num_data):
print ("Processsing: Shape [%d] Block[%d]"%(shape_idx, j))
pts = cur_data[j,...]
feed_dict = {
pointclouds_ph: np.expand_dims(pts,0),
ptsseglabel_ph: np.expand_dims(pts_label_one_hot[j,...],0),
ptsgroup_label_ph: np.expand_dims(pts_group_label[j,...],0),
is_training_ph: is_training,
}
pts_corr_val0, pred_confidence_val0, ptsclassification_val0, pts_corr_label_val0 = \
sess.run([net_output['simmat'],
net_output['conf'],
net_output['semseg'],
group_mat_label],
feed_dict=feed_dict)
seg = cur_seg[j,...]
ins = cur_group[j,...]
pts_corr_val = np.squeeze(pts_corr_val0[0])
pred_confidence_val = np.squeeze(pred_confidence_val0[0])
ptsclassification_val = np.argmax(np.squeeze(ptsclassification_val0[0]),axis=1)
pts_corr_label_val = np.squeeze(1 - pts_corr_label_val0)
seg = np.squeeze(seg)
ins = np.squeeze(ins)
ind = (seg == 8)
pts_corr_val0 = (pts_corr_val > 1.).astype(np.float)
print np.mean(np.transpose(np.abs(pts_corr_label_val[ind] - pts_corr_val0[ind]),axes=[1,0])[ind])
ths, ths_, cnt = Get_Ths(pts_corr_val, seg, ins, ths, ths_, cnt)
print ths/cnt
if OUTPUT_VERBOSE:
un,indices = np.unique(ins,return_index=True)
for ii,id in enumerate(indices):
corr = pts_corr_val[id].copy()
output_scale_point_cloud(pts[:,6:], np.float32(corr), os.path.join(OUTPUT_DIR, '%d_%d_%d_%d_scale.obj'%(shape_idx,j,un[ii],seg[id])))
corr = pts_corr_label_val[id]
output_scale_point_cloud(pts[:, 6:], np.float32(corr), os.path.join(OUTPUT_DIR, '%d_%d_%d_%d_scalegt.obj' % (shape_idx, j, un[ii],seg[id])))
output_scale_point_cloud(pts[:, 6:], np.float32(pred_confidence_val), os.path.join(OUTPUT_DIR, '%d_%d_conf.obj' % (shape_idx, j)))
output_color_point_cloud(pts[:,6:], ptsclassification_val.astype(np.int32), os.path.join(OUTPUT_DIR, '%d_seg.obj'%(shape_idx)))
ths = [ths[i]/cnt[i] if cnt[i] != 0 else 0.2 for i in range(len(cnt))]
np.savetxt(os.path.join(RESTORE_DIR, 'pergroup_thres.txt'), ths)
min_groupsize = [int(float(min_groupsize[i]) / min_groupsize_cnt[i]) if min_groupsize_cnt[i] != 0 else 0 for i in range(len(min_groupsize))]
np.savetxt(os.path.join(RESTORE_DIR, 'mingroupsize.txt'), min_groupsize)
with tf.Graph().as_default():
predict()